Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Enhancing soil organic carbon prediction of LUCAS soil database using deep learning and deep feature selection

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60460709%3A41210%2F24%3A101034" target="_blank" >RIV/60460709:41210/24:101034 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://doi.org/10.1016/j.compag.2024.109494" target="_blank" >https://doi.org/10.1016/j.compag.2024.109494</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.compag.2024.109494" target="_blank" >10.1016/j.compag.2024.109494</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Enhancing soil organic carbon prediction of LUCAS soil database using deep learning and deep feature selection

  • Popis výsledku v původním jazyce

    The main terrestrial carbon (C) fraction is soil organic carbon (SOC), which has a considerable effect on climate change and greenhouse gas emissions through the absorption and sequestration of carbon dioxide (CO2). 2 ). This has made SOC assessment very important from both economic and environmental viewpoints. The growing count of soil spectral libraries (SSLs) from regional to global scales has brought a tremendous opportunity for the quantification of SOC through developing spectral-based prediction models. Hence, there is a need to take advantage of big data analytics for spectral data processing. The unique ability of deep learning (DL) techniques to leverage important features of high-dimensional large-scale SSLs has made them top-demanding for more sophisticated modeling. The core objective of the present study was to assess the ability of two different DL algorithms, i.e., one-dimensional convolutional neural network (1DCNN) and fully connected neural network (FCNN) coupled with stacked autoencoder (SAE) feature extraction for SOC prediction based on the data from the land use/cover area frame statistical survey (LUCAS) database. SAE extracted the high-level deep features from the visible-near-infrared-shortwave infrared (Vis-NIR-SWIR) spectra of 11441 soil samples, which were then considered as inputs to the 1DCNN and FCNN models for predicting the SOC content. Both SAE-DL feature-selected models yielded higher accuracy than those the DL developed on the entire spectra and a random forest (RF) model was constructed for comparison. The best prediction was achieved by SAE-1DCNN (R2 2 = 0.78, RMSE = 3.94%, RPD = 4.88, RPIQ = 3.91) followed by 1DCNN (R2 2 = 0.73, RMSE = 5.43%, RPD = 3.67, RPIQ = 2.84) proving the superiority of 1DCNN over FCNN in this study. These results supported the applicability of combined deep features extraction and regression methods for predicting SOC using high dimensional large-scale SSLs.

  • Název v anglickém jazyce

    Enhancing soil organic carbon prediction of LUCAS soil database using deep learning and deep feature selection

  • Popis výsledku anglicky

    The main terrestrial carbon (C) fraction is soil organic carbon (SOC), which has a considerable effect on climate change and greenhouse gas emissions through the absorption and sequestration of carbon dioxide (CO2). 2 ). This has made SOC assessment very important from both economic and environmental viewpoints. The growing count of soil spectral libraries (SSLs) from regional to global scales has brought a tremendous opportunity for the quantification of SOC through developing spectral-based prediction models. Hence, there is a need to take advantage of big data analytics for spectral data processing. The unique ability of deep learning (DL) techniques to leverage important features of high-dimensional large-scale SSLs has made them top-demanding for more sophisticated modeling. The core objective of the present study was to assess the ability of two different DL algorithms, i.e., one-dimensional convolutional neural network (1DCNN) and fully connected neural network (FCNN) coupled with stacked autoencoder (SAE) feature extraction for SOC prediction based on the data from the land use/cover area frame statistical survey (LUCAS) database. SAE extracted the high-level deep features from the visible-near-infrared-shortwave infrared (Vis-NIR-SWIR) spectra of 11441 soil samples, which were then considered as inputs to the 1DCNN and FCNN models for predicting the SOC content. Both SAE-DL feature-selected models yielded higher accuracy than those the DL developed on the entire spectra and a random forest (RF) model was constructed for comparison. The best prediction was achieved by SAE-1DCNN (R2 2 = 0.78, RMSE = 3.94%, RPD = 4.88, RPIQ = 3.91) followed by 1DCNN (R2 2 = 0.73, RMSE = 5.43%, RPD = 3.67, RPIQ = 2.84) proving the superiority of 1DCNN over FCNN in this study. These results supported the applicability of combined deep features extraction and regression methods for predicting SOC using high dimensional large-scale SSLs.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    40104 - Soil science

Návaznosti výsledku

  • Projekt

  • Návaznosti

    R - Projekt Ramcoveho programu EK

Ostatní

  • Rok uplatnění

    2024

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Computers and Electronics in Agriculture

  • ISSN

    0168-1699

  • e-ISSN

    0168-1699

  • Svazek periodika

    227

  • Číslo periodika v rámci svazku

    1

  • Stát vydavatele periodika

    GB - Spojené království Velké Británie a Severního Irska

  • Počet stran výsledku

    8

  • Strana od-do

  • Kód UT WoS článku

    001372189100001

  • EID výsledku v databázi Scopus

    2-s2.0-85204972149