Using geostatistics and machine learning models to analyze the influence of soil nutrients and terrain attributes on lead prediction in forest soils
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60460709%3A41210%2F24%3A97963" target="_blank" >RIV/60460709:41210/24:97963 - isvavai.cz</a>
Výsledek na webu
<a href="https://link.springer.com/content/pdf/10.1007/s40808-023-01890-4.pdf" target="_blank" >https://link.springer.com/content/pdf/10.1007/s40808-023-01890-4.pdf</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s40808-023-01890-4" target="_blank" >10.1007/s40808-023-01890-4</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Using geostatistics and machine learning models to analyze the influence of soil nutrients and terrain attributes on lead prediction in forest soils
Popis výsledku v původním jazyce
The study aimed at investigating the possibility of predicting lead (Pb) in forest soils by combining terrain attributes and soil nutrients using geostatistics and machine learning algorithms (MLAs). The study was partitioned into three categories: predicting Pb in forest soil using terrain attributes and RK (Context 1); predicting Pb in forest soil using soil nutrients and RK (Context 2); and lastly predicting Pb in forest soils using a combination of soil nutrients, terrain attributes, and RK (Context 3). Stochastic Gradient Boosting-regression kriging (SGB-RK), cubist regression kriging (CUB_RK), quantile regression forest kriging(QRF_RK) and k nearest neighbour regression kriging (KNN_RK) were the modeling approaches used in the estimation of lead (Pb) concentration in forest soil. The results showed that combining the terrain attribute as an auxiliary dataset with QRF_RK proved to be the most effective method for predicting Pb in forest soil (context 1). The most effective method for predicting Pb in forest soil was to combine soil nutrients as an auxiliary dataset with SGB_RK (context 2). Combining cubist_RK with an ancillary dataset of soil nutrients and terrain attributes is the most effective method for predicting Pb in forest soils (context 3). In addition, combining ancillary variables such as soil nutrients and terrain attributes with cubist_RK generated the best results for estimating Pb concentration in forest soils. It was found that applying a robust digital soil mapping (DSM) model in combination with terrain attributes and soil nutrients is efficient in predicting the spatial distribution and estimation of uncertainty levels of lead (Pb) in forest soils based on the model’s accuracy parameters.
Název v anglickém jazyce
Using geostatistics and machine learning models to analyze the influence of soil nutrients and terrain attributes on lead prediction in forest soils
Popis výsledku anglicky
The study aimed at investigating the possibility of predicting lead (Pb) in forest soils by combining terrain attributes and soil nutrients using geostatistics and machine learning algorithms (MLAs). The study was partitioned into three categories: predicting Pb in forest soil using terrain attributes and RK (Context 1); predicting Pb in forest soil using soil nutrients and RK (Context 2); and lastly predicting Pb in forest soils using a combination of soil nutrients, terrain attributes, and RK (Context 3). Stochastic Gradient Boosting-regression kriging (SGB-RK), cubist regression kriging (CUB_RK), quantile regression forest kriging(QRF_RK) and k nearest neighbour regression kriging (KNN_RK) were the modeling approaches used in the estimation of lead (Pb) concentration in forest soil. The results showed that combining the terrain attribute as an auxiliary dataset with QRF_RK proved to be the most effective method for predicting Pb in forest soil (context 1). The most effective method for predicting Pb in forest soil was to combine soil nutrients as an auxiliary dataset with SGB_RK (context 2). Combining cubist_RK with an ancillary dataset of soil nutrients and terrain attributes is the most effective method for predicting Pb in forest soils (context 3). In addition, combining ancillary variables such as soil nutrients and terrain attributes with cubist_RK generated the best results for estimating Pb concentration in forest soils. It was found that applying a robust digital soil mapping (DSM) model in combination with terrain attributes and soil nutrients is efficient in predicting the spatial distribution and estimation of uncertainty levels of lead (Pb) in forest soils based on the model’s accuracy parameters.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
40104 - Soil science
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
MODELING EARTH SYSTEMS AND ENVIRONMENT
ISSN
2363-6203
e-ISSN
2363-6203
Svazek periodika
10
Číslo periodika v rámci svazku
2
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
14
Strana od-do
2099-2112
Kód UT WoS článku
001116446700002
EID výsledku v databázi Scopus
2-s2.0-85177770658