Modelling of hot-air and vacuum drying of persimmon fruit (Diospyros kaki) using computational intelligence methods
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60460709%3A41310%2F20%3A81706" target="_blank" >RIV/60460709:41310/20:81706 - isvavai.cz</a>
Výsledek na webu
<a href="https://agronomy.emu.ee/wp-content/uploads/2020/05/AR2020_Vol18SI2_Khaled.pdf#abstract-7515" target="_blank" >https://agronomy.emu.ee/wp-content/uploads/2020/05/AR2020_Vol18SI2_Khaled.pdf#abstract-7515</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.15159/ar.20.095" target="_blank" >10.15159/ar.20.095</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Modelling of hot-air and vacuum drying of persimmon fruit (Diospyros kaki) using computational intelligence methods
Popis výsledku v původním jazyce
The study evaluated the feasibility of applying computational intelligence methods as a non destructive technique in describing the drying behaviour of persimmon fruit using vacuum drying (VD) and hot air drying (HAD) methods and to compare the results with thin layer mathematical models. Drying temperatures were 50, 60 and 70 C. Kinetic models were developed using semi theoretical thin layer models and computational intelligence methods: multi layer feed forward artificial neural network (ANN) and support vector regression (SVR). The statistical indicators of coefficient of determination (R2 ) and root mean square error (RMSE) were used to assess the suitability of the models. The thin layer mathematical models namely page and logarithmic accurately described the drying kinetics of persimmon slices with the highest R2 of 0,9999 and lowest RMSE of 0,0031. ANN showed R2 and RMSE values of 1,0000 and 0,0003, while SVR showed R2 of 0,9999 and RMSE of 0,0004. The validation results indicated good agreeme
Název v anglickém jazyce
Modelling of hot-air and vacuum drying of persimmon fruit (Diospyros kaki) using computational intelligence methods
Popis výsledku anglicky
The study evaluated the feasibility of applying computational intelligence methods as a non destructive technique in describing the drying behaviour of persimmon fruit using vacuum drying (VD) and hot air drying (HAD) methods and to compare the results with thin layer mathematical models. Drying temperatures were 50, 60 and 70 C. Kinetic models were developed using semi theoretical thin layer models and computational intelligence methods: multi layer feed forward artificial neural network (ANN) and support vector regression (SVR). The statistical indicators of coefficient of determination (R2 ) and root mean square error (RMSE) were used to assess the suitability of the models. The thin layer mathematical models namely page and logarithmic accurately described the drying kinetics of persimmon slices with the highest R2 of 0,9999 and lowest RMSE of 0,0031. ANN showed R2 and RMSE values of 1,0000 and 0,0003, while SVR showed R2 of 0,9999 and RMSE of 0,0004. The validation results indicated good agreeme
Klasifikace
Druh
J<sub>SC</sub> - Článek v periodiku v databázi SCOPUS
CEP obor
—
OECD FORD obor
40401 - Agricultural biotechnology and food biotechnology
Návaznosti výsledku
Projekt
<a href="/cs/project/EF16_027%2F0008366" target="_blank" >EF16_027/0008366: Podpora rozvoje mezinárodních mobilit výzkumných pracovníků ČZU v Praze</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Agronomy Research
ISSN
1406-894X
e-ISSN
—
Svazek periodika
18
Číslo periodika v rámci svazku
S2
Stát vydavatele periodika
CZ - Česká republika
Počet stran výsledku
13
Strana od-do
1323-1335
Kód UT WoS článku
—
EID výsledku v databázi Scopus
2-s2.0-85086325507