Are finite affine topological systems worthy of study?
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60460709%3A41310%2F23%3A96638" target="_blank" >RIV/60460709:41310/23:96638 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.sciencedirect.com/science/article/pii/S0165011422005127?via%3Dihub" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0165011422005127?via%3Dihub</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s00500-022-07260-z" target="_blank" >10.1007/s00500-022-07260-z</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Are finite affine topological systems worthy of study?
Popis výsledku v původním jazyce
There exists the notion of topological system of S. Vickers, which provides a common framework for both topological spaces and the underlying algebraic structures of their topologies-locales. A well-known result of S. A. Morris states that every topological space is homeomorphic to a subspace of a product of a finite (three-element) topological space. We have already shown that the space of S. A. Morris is (in general) no longer finite in case of affine topological spaces (inspired by the concept of affine set of Y. Diers), which include many-valued topology. This paper provides an analogue of the result of S. A. Morris for topological systems of S. Vickers, and also shows that for affine topological systems, an analogue of the above three-element space becomes (in general) infinite. A simple message here is that finite systems play a (probably) less important role in the affine topological setting (for example, in many-valued topology) than they do play in the classical topology.
Název v anglickém jazyce
Are finite affine topological systems worthy of study?
Popis výsledku anglicky
There exists the notion of topological system of S. Vickers, which provides a common framework for both topological spaces and the underlying algebraic structures of their topologies-locales. A well-known result of S. A. Morris states that every topological space is homeomorphic to a subspace of a product of a finite (three-element) topological space. We have already shown that the space of S. A. Morris is (in general) no longer finite in case of affine topological spaces (inspired by the concept of affine set of Y. Diers), which include many-valued topology. This paper provides an analogue of the result of S. A. Morris for topological systems of S. Vickers, and also shows that for affine topological systems, an analogue of the above three-element space becomes (in general) infinite. A simple message here is that finite systems play a (probably) less important role in the affine topological setting (for example, in many-valued topology) than they do play in the classical topology.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10101 - Pure mathematics
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
FUZZY SETS AND SYSTEMS
ISSN
0165-0114
e-ISSN
0165-0114
Svazek periodika
466
Číslo periodika v rámci svazku
AUG 30 2023
Stát vydavatele periodika
CZ - Česká republika
Počet stran výsledku
11
Strana od-do
1-11
Kód UT WoS článku
001013270900001
EID výsledku v databázi Scopus
2-s2.0-85146936298