Revealing the long-term behaviour of nZVI and biochar in metal(loid)-contaminated soil: focus on Fe transformations
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60460709%3A41310%2F23%3A97256" target="_blank" >RIV/60460709:41310/23:97256 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/60460709:41330/23:97256
Výsledek na webu
<a href="http://dx.doi.org/10.1039/d3en00429e" target="_blank" >http://dx.doi.org/10.1039/d3en00429e</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1039/d3en00429e" target="_blank" >10.1039/d3en00429e</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Revealing the long-term behaviour of nZVI and biochar in metal(loid)-contaminated soil: focus on Fe transformations
Popis výsledku v původním jazyce
The long-term behaviour of stabilising amendments for soil remediation is rarely being tested. Therefore, we conducted time-dependent experiments using contaminated soil from a post-mining area. The soil was individually incubated for 1, 3, 12, and 15 months with i) biochar (BC), ii) nano zero-valent iron (nZVI), and iii) a composite of nZVI and BC (nZVI-BC). Two experimental designs were realised: i) mixing of the soil with the amendments and ii) applying the amendments as a layer between the soil and silica sand. With this dual approach, both the immobilisation efficiency and the solid phase transformations of the amendments were investigated under the effect of time. Solid-state (SEM/EDS, XAS, XRD) and liquid phase (pore water sampling, soil extractions) analyses were employed for a holistic assessment of the amendments. The three tested amendments demonstrated different efficiencies for metal(loid) immobilisation in this soil. Biochar and nZVI-BC were mostly efficient for long-term immobilisation, especially for Zn and Cd, while the efficiency of nZVI was instant but rather short-term and preferably towards Pb and As. The oxidation of nZVI was not directly proportional to time, and the nZVI products, such as lepidocrocite, ferrihydrite, and magnetite, were identified in the same proportions regardless of Fe0 oxidation. Implications of natural attenuation were also noticed in the control soil. However, enhancement of the contaminated soil with amendments is still recommended since the important metal(loid) scavengers (Fe and/or Mn oxides) in the soil occurred at least 2x more often after the amendment application. Immobilisation of Zn, Pb, Cd, and As was achieved in smelting-affected soil showing changes over time. The oxidation of Fe0 was not directly proportional with time.
Název v anglickém jazyce
Revealing the long-term behaviour of nZVI and biochar in metal(loid)-contaminated soil: focus on Fe transformations
Popis výsledku anglicky
The long-term behaviour of stabilising amendments for soil remediation is rarely being tested. Therefore, we conducted time-dependent experiments using contaminated soil from a post-mining area. The soil was individually incubated for 1, 3, 12, and 15 months with i) biochar (BC), ii) nano zero-valent iron (nZVI), and iii) a composite of nZVI and BC (nZVI-BC). Two experimental designs were realised: i) mixing of the soil with the amendments and ii) applying the amendments as a layer between the soil and silica sand. With this dual approach, both the immobilisation efficiency and the solid phase transformations of the amendments were investigated under the effect of time. Solid-state (SEM/EDS, XAS, XRD) and liquid phase (pore water sampling, soil extractions) analyses were employed for a holistic assessment of the amendments. The three tested amendments demonstrated different efficiencies for metal(loid) immobilisation in this soil. Biochar and nZVI-BC were mostly efficient for long-term immobilisation, especially for Zn and Cd, while the efficiency of nZVI was instant but rather short-term and preferably towards Pb and As. The oxidation of nZVI was not directly proportional to time, and the nZVI products, such as lepidocrocite, ferrihydrite, and magnetite, were identified in the same proportions regardless of Fe0 oxidation. Implications of natural attenuation were also noticed in the control soil. However, enhancement of the contaminated soil with amendments is still recommended since the important metal(loid) scavengers (Fe and/or Mn oxides) in the soil occurred at least 2x more often after the amendment application. Immobilisation of Zn, Pb, Cd, and As was achieved in smelting-affected soil showing changes over time. The oxidation of Fe0 was not directly proportional with time.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10511 - Environmental sciences (social aspects to be 5.7)
Návaznosti výsledku
Projekt
<a href="/cs/project/GC21-23794J" target="_blank" >GC21-23794J: Porovnání účinnosti inovativních nanosorbentů pro kovy a metaloidy v půdách kontaminovaných hutní činností: Geochemický a ekotoxikologický přístup</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Environmental Science-Nano
ISSN
2051-8153
e-ISSN
2051-8153
Svazek periodika
10
Číslo periodika v rámci svazku
10
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
19
Strana od-do
2861-2879
Kód UT WoS článku
001078308100001
EID výsledku v databázi Scopus
2-s2.0-85172184235