Flammability and Thermoregulation Performance of Multilayer Protective Clothing Incorporated with Phase Change Materials
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60460709%3A41310%2F24%3A101328" target="_blank" >RIV/60460709:41310/24:101328 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/60460709:41340/24:101328
Výsledek na webu
<a href="https://doi.org/10.3390/ma17235826" target="_blank" >https://doi.org/10.3390/ma17235826</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.3390/ma17235826" target="_blank" >10.3390/ma17235826</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Flammability and Thermoregulation Performance of Multilayer Protective Clothing Incorporated with Phase Change Materials
Popis výsledku v původním jazyce
Firefighters need personal protection equipment and protective clothing to be safe and protected when responding to fire incidents. At present, firefighters' suits are developed by using inherently thermal-resistant fibers but pose serious problems related to comfort. In the present research, multilayered fire-fighting fabrics were developed with different fiber blends. Multilayer fire retardant (FR) fabrics with phase change materials (PCMs) inserts were developed and compared with reference multilayer fabrics without PCM. In this context, four fabric samples were chosen to fabricate the multilayer FR fabrics. Properties of multilayer fabrics were investigated, which include physical, thermo-physiological comfort, and flame-resistant performance. The heating process of the clothing was examined using infrared (IR) thermography, differential scanning calorimetry (DSC), thermal protective testing (TPP), and steady-state (Convective and Radiant) heat resistance tests. Areal density and thickness were measured as physical parameters, and air permeability (AP), overall moisture management capacity (OMMC), and thermal conductivity were measured as thermo-physiological comfort characteristics. The inclusion of PCM improved the thermal protection as well as flame resistance significantly. Sample S1 (Nomex + PTFE + Nomex with PCM) demonstrated superior fire resistance, air permeability, and thermal protection, with a 37.3% increase in air permeability as compared to the control sample (SC) by maintaining comfort while offering high thermal resilience. The inclusion of PCM enhanced its thermal regulation, moderating heat transfer. Flame resistance tests confirmed its excellent performance, while thermo-physiological assessments highlighted a well-balanced combination of thermal conductivity and air permeability. This study will help to improve the performance of firefighter protective fabrics and provide guidelines in terms of balancing comfort and performance while designing firefighter protective clothing for different climatic conditions.
Název v anglickém jazyce
Flammability and Thermoregulation Performance of Multilayer Protective Clothing Incorporated with Phase Change Materials
Popis výsledku anglicky
Firefighters need personal protection equipment and protective clothing to be safe and protected when responding to fire incidents. At present, firefighters' suits are developed by using inherently thermal-resistant fibers but pose serious problems related to comfort. In the present research, multilayered fire-fighting fabrics were developed with different fiber blends. Multilayer fire retardant (FR) fabrics with phase change materials (PCMs) inserts were developed and compared with reference multilayer fabrics without PCM. In this context, four fabric samples were chosen to fabricate the multilayer FR fabrics. Properties of multilayer fabrics were investigated, which include physical, thermo-physiological comfort, and flame-resistant performance. The heating process of the clothing was examined using infrared (IR) thermography, differential scanning calorimetry (DSC), thermal protective testing (TPP), and steady-state (Convective and Radiant) heat resistance tests. Areal density and thickness were measured as physical parameters, and air permeability (AP), overall moisture management capacity (OMMC), and thermal conductivity were measured as thermo-physiological comfort characteristics. The inclusion of PCM improved the thermal protection as well as flame resistance significantly. Sample S1 (Nomex + PTFE + Nomex with PCM) demonstrated superior fire resistance, air permeability, and thermal protection, with a 37.3% increase in air permeability as compared to the control sample (SC) by maintaining comfort while offering high thermal resilience. The inclusion of PCM enhanced its thermal regulation, moderating heat transfer. Flame resistance tests confirmed its excellent performance, while thermo-physiological assessments highlighted a well-balanced combination of thermal conductivity and air permeability. This study will help to improve the performance of firefighter protective fabrics and provide guidelines in terms of balancing comfort and performance while designing firefighter protective clothing for different climatic conditions.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20500 - Materials engineering
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Materials
ISSN
1996-1944
e-ISSN
1996-1944
Svazek periodika
17
Číslo periodika v rámci svazku
DEC 2024
Stát vydavatele periodika
CH - Švýcarská konfederace
Počet stran výsledku
13
Strana od-do
—
Kód UT WoS článku
001376481100001
EID výsledku v databázi Scopus
2-s2.0-85211814356