Importance of automatic threshold for image segmentation for accurate measurement of fine roots of woody plants
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60460709%3A41320%2F14%3A66746" target="_blank" >RIV/60460709:41320/14:66746 - isvavai.cz</a>
Výsledek na webu
<a href="http://www.nlcsk.sk/fj/images/pdf/Rocnik_60/Cislo_4_2014/Surovy_akol.pdf" target="_blank" >http://www.nlcsk.sk/fj/images/pdf/Rocnik_60/Cislo_4_2014/Surovy_akol.pdf</a>
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Importance of automatic threshold for image segmentation for accurate measurement of fine roots of woody plants
Popis výsledku v původním jazyce
The fine roots are considered the key organs for plant survival, growth and productivity. Measurement of fine roots variables is easily and conveniently achieved by means of digital image. The descriptive variables like root area, surface, total length and diameter distribution may be obtained from the image. Analysis of digital image consists from several steps, each of them represents potential source of the error. In this article we want to evaluate the automatic thresholding and its impact on principal variables obtainable from digital scans of the fine roots. We compare 16 different thresholding methods and compare them with the human processed binary images of roots of cork oak (Quercus suber L.). We found some of the thresholding methods performsignificantly better than others in the estimation of total projected area however the length estimation error points out a little different order of accuracy.
Název v anglickém jazyce
Importance of automatic threshold for image segmentation for accurate measurement of fine roots of woody plants
Popis výsledku anglicky
The fine roots are considered the key organs for plant survival, growth and productivity. Measurement of fine roots variables is easily and conveniently achieved by means of digital image. The descriptive variables like root area, surface, total length and diameter distribution may be obtained from the image. Analysis of digital image consists from several steps, each of them represents potential source of the error. In this article we want to evaluate the automatic thresholding and its impact on principal variables obtainable from digital scans of the fine roots. We compare 16 different thresholding methods and compare them with the human processed binary images of roots of cork oak (Quercus suber L.). We found some of the thresholding methods performsignificantly better than others in the estimation of total projected area however the length estimation error points out a little different order of accuracy.
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
GK - Lesnictví
OECD FORD obor
—
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2014
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Lesnicky časopis (Forestry Journal)
ISSN
0323-1046
e-ISSN
—
Svazek periodika
60
Číslo periodika v rámci svazku
4
Stát vydavatele periodika
SK - Slovenská republika
Počet stran výsledku
6
Strana od-do
244-249
Kód UT WoS článku
—
EID výsledku v databázi Scopus
—