A generalized nonlinear mixed-effects height to crown base model for Mongolian oak in northeast China
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60460709%3A41320%2F17%3A71970" target="_blank" >RIV/60460709:41320/17:71970 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1016/j.foreco.2016.09.012" target="_blank" >http://dx.doi.org/10.1016/j.foreco.2016.09.012</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.foreco.2016.09.012" target="_blank" >10.1016/j.foreco.2016.09.012</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
A generalized nonlinear mixed-effects height to crown base model for Mongolian oak in northeast China
Popis výsledku v původním jazyce
Tree height to crown base (HCB) is an important variable commonly included as one of the predictors in growth and yield models that are the decision-support tools in forest management. In this study, we developed a generalized nonlinear mixed-effects individual tree HCB model using data from a total of 3133 Mongolian oak (Quercus mongolica) trees on 112 sample plots allocated in Wangqing Forest Bureau of northeast China. Because observations taken from same sample plots were highly correlated with each other, the random effects at the levels of both sample plots and stands with different site conditions (blocks) were taken into consideration to develop a two-level nonlinear mixed-effects HCB model. The results showed that the significant predictors included total tree height, diameter at breast height (DBH), dominant height, and total basal area of all trees with DBH larger than a target tree per sample plot. Modelling the random effects at block level alone led to highly significant correla
Název v anglickém jazyce
A generalized nonlinear mixed-effects height to crown base model for Mongolian oak in northeast China
Popis výsledku anglicky
Tree height to crown base (HCB) is an important variable commonly included as one of the predictors in growth and yield models that are the decision-support tools in forest management. In this study, we developed a generalized nonlinear mixed-effects individual tree HCB model using data from a total of 3133 Mongolian oak (Quercus mongolica) trees on 112 sample plots allocated in Wangqing Forest Bureau of northeast China. Because observations taken from same sample plots were highly correlated with each other, the random effects at the levels of both sample plots and stands with different site conditions (blocks) were taken into consideration to develop a two-level nonlinear mixed-effects HCB model. The results showed that the significant predictors included total tree height, diameter at breast height (DBH), dominant height, and total basal area of all trees with DBH larger than a target tree per sample plot. Modelling the random effects at block level alone led to highly significant correla
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
40102 - Forestry
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2017
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Forest Ecology and Management
ISSN
0378-1127
e-ISSN
—
Svazek periodika
384
Číslo periodika v rámci svazku
JAN
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
10
Strana od-do
34-43
Kód UT WoS článku
000390727600005
EID výsledku v databázi Scopus
2-s2.0-84994035479