Unmanned aerial vehicles (UAV) for assessment of qualitative classification of Norway spruce in temperate forest stands
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60460709%3A41320%2F18%3A78165" target="_blank" >RIV/60460709:41320/18:78165 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/86652079:_____/18:00492799 RIV/62156489:43410/18:43913002
Výsledek na webu
<a href="http://dx.doi.org/10.1080/10095020.2017.1416994" target="_blank" >http://dx.doi.org/10.1080/10095020.2017.1416994</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1080/10095020.2017.1416994" target="_blank" >10.1080/10095020.2017.1416994</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Unmanned aerial vehicles (UAV) for assessment of qualitative classification of Norway spruce in temperate forest stands
Popis výsledku v původním jazyce
The study investigates the potential of UAV-based remote sensing technique for monitoring of Norway spruce health condition in the affected forest areas. The objectives are: (1) to test the applicability of UAV visible an near-infrared (VNIR) and geometrical data based on Z values of point dense cloud (PDC) raster to separate forest species and dead trees in the study area, (2) to explore the relationship between UAV VNIR data and individual spruce health indicators from field sampling, and (3) to explore the possibility of the qualitative classification of spruce health indicators. Analysis based on NDVI and PDC raster was successfully applied for separation of spruce and silver fir, and for identification of dead tree category. Separation between common beech and fir was distinguished by the object-oriented image analysis. NDVI was able to identify the presence of key indicators of spruce health, such as mechanical damage on stems and stem resin exudation linked to honey fungus infestation, while s
Název v anglickém jazyce
Unmanned aerial vehicles (UAV) for assessment of qualitative classification of Norway spruce in temperate forest stands
Popis výsledku anglicky
The study investigates the potential of UAV-based remote sensing technique for monitoring of Norway spruce health condition in the affected forest areas. The objectives are: (1) to test the applicability of UAV visible an near-infrared (VNIR) and geometrical data based on Z values of point dense cloud (PDC) raster to separate forest species and dead trees in the study area, (2) to explore the relationship between UAV VNIR data and individual spruce health indicators from field sampling, and (3) to explore the possibility of the qualitative classification of spruce health indicators. Analysis based on NDVI and PDC raster was successfully applied for separation of spruce and silver fir, and for identification of dead tree category. Separation between common beech and fir was distinguished by the object-oriented image analysis. NDVI was able to identify the presence of key indicators of spruce health, such as mechanical damage on stems and stem resin exudation linked to honey fungus infestation, while s
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20705 - Remote sensing
Návaznosti výsledku
Projekt
<a href="/cs/project/LO1415" target="_blank" >LO1415: CzechGlobe 2020 - Rozvoj Centra pro studium dopadů globální změny klimatu</a><br>
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2018
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Geo-Spatial Information Science
ISSN
1009-5020
e-ISSN
—
Svazek periodika
21
Číslo periodika v rámci svazku
1
Stát vydavatele periodika
CZ - Česká republika
Počet stran výsledku
9
Strana od-do
12-20
Kód UT WoS článku
000433052500003
EID výsledku v databázi Scopus
2-s2.0-85048046148