Individual Tree Identification in ULS Point Clouds Using a Crown Width Mixed-Effects Model Based on NFI Data
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60460709%3A41320%2F22%3A94082" target="_blank" >RIV/60460709:41320/22:94082 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.mdpi.com/2072-4292/14/4/926" target="_blank" >https://www.mdpi.com/2072-4292/14/4/926</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.3390/rs14040926" target="_blank" >10.3390/rs14040926</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Individual Tree Identification in ULS Point Clouds Using a Crown Width Mixed-Effects Model Based on NFI Data
Popis výsledku v původním jazyce
A linear mixed-effects model was used to relate crown width to height using an inventory plot as a random effect for trees in Czechia based on data from the National Forest Inventory (NFI). This model was used to estimate window size for a local maximum filter procedure (LMF) to detect individual tree tops in unmanned aerial laser scanning (ULS) point clouds of mixed species forest stands with diverse structures. Random model parameters were estimated for the study site based on several sample trees. Models calibrated with five or more samples achieved significantly better results (mean percentage error, MPE -0,17 for 5 samples) compared to when a fixed-effects model (MPE -0,62) was used. Lower performance was observed in dense stands with trees that were between 5 and 10 m in height. It was concluded that locally calibrated models predicting crown widths from tree heights might serve as a universal point of departure when searching for an optimal window size setting in LMF procedures.
Název v anglickém jazyce
Individual Tree Identification in ULS Point Clouds Using a Crown Width Mixed-Effects Model Based on NFI Data
Popis výsledku anglicky
A linear mixed-effects model was used to relate crown width to height using an inventory plot as a random effect for trees in Czechia based on data from the National Forest Inventory (NFI). This model was used to estimate window size for a local maximum filter procedure (LMF) to detect individual tree tops in unmanned aerial laser scanning (ULS) point clouds of mixed species forest stands with diverse structures. Random model parameters were estimated for the study site based on several sample trees. Models calibrated with five or more samples achieved significantly better results (mean percentage error, MPE -0,17 for 5 samples) compared to when a fixed-effects model (MPE -0,62) was used. Lower performance was observed in dense stands with trees that were between 5 and 10 m in height. It was concluded that locally calibrated models predicting crown widths from tree heights might serve as a universal point of departure when searching for an optimal window size setting in LMF procedures.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20705 - Remote sensing
Návaznosti výsledku
Projekt
<a href="/cs/project/QK21010354" target="_blank" >QK21010354: Progresivní metody hospodářsko-úpravnického plánování pro podporu trvale udržitelného lesního hospodářství</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Remote Sensing
ISSN
2072-4292
e-ISSN
—
Svazek periodika
14
Číslo periodika v rámci svazku
4
Stát vydavatele periodika
CH - Švýcarská konfederace
Počet stran výsledku
15
Strana od-do
1-15
Kód UT WoS článku
000769500300001
EID výsledku v databázi Scopus
2-s2.0-85125012751