The role of propagule pressure in experimental bark beetle invasions
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60460709%3A41320%2F23%3A96966" target="_blank" >RIV/60460709:41320/23:96966 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1111/1365-2664.14326" target="_blank" >http://dx.doi.org/10.1111/1365-2664.14326</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1111/1365-2664.14326" target="_blank" >10.1111/1365-2664.14326</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
The role of propagule pressure in experimental bark beetle invasions
Popis výsledku v původním jazyce
Although many non-native species arrive in novel environments, only a fraction successfully establish. A crucial factor affecting the colonization process of invading species is propagule pressure. The positive association between propagule pressure and colonization probability is driven both by stochastic dynamics and the 'Allee effect'. Although the role of Allee effects in invading populations is theoretically compelling, they are difficult to quantify in the field because the earliest phases of biological invasions are typically not observed. We conducted parallel studies using two species of bark beetles, Hylurgus ligniperda in New Zealand and Ips pini in North America, to (i) assess the role of propagule pressure on colonization success, (ii) empirically test for Allee effects and (iii) estimate Allee thresholds. We evaluated each of these factors by experimentally testing the effect of propagule pressure (numbers released) on simulated tree colonization success in two different settings: (1) field conditions where beetles could disperse freely and (2) enclosed cages where dispersal loss was prevented. Colonization success was positively associated with numbers released (i.e. propagule pressure) for both species, though colonization occurred at lower numbers for H. ligniperda than for I. pini. A demographic Allee effect was only detected in H. ligniperda and the Allee threshold was smaller when beetles were released 1 m from host billets than when they were released 10 m away. Greater colonization success at lower release densities may explain the invasion success of H. ligniperda worldwide. Higher release densities required for successful colonization may explain why I. pini is a poor establisher. Synthesis and applications. Our results linking invasion failure to small founding population densities generally support the theoretical literature on the role of propagule pressure and Allee effects in biological invasions. Agencies such as the International Plant Protection Committee (IPPC) setting phytosanitary measures such as the International Standards for Phytosanitary Measures No. 15 (ISPM 15) should consider using the colonization thresholds estimated here to limit numbers of colonizing individuals below invasion thresholds. Additionally, agencies conducting trapping efforts at ports-of-entry should be aware of these thresholds and widely report when trapping numbers exceed these thresholds.
Název v anglickém jazyce
The role of propagule pressure in experimental bark beetle invasions
Popis výsledku anglicky
Although many non-native species arrive in novel environments, only a fraction successfully establish. A crucial factor affecting the colonization process of invading species is propagule pressure. The positive association between propagule pressure and colonization probability is driven both by stochastic dynamics and the 'Allee effect'. Although the role of Allee effects in invading populations is theoretically compelling, they are difficult to quantify in the field because the earliest phases of biological invasions are typically not observed. We conducted parallel studies using two species of bark beetles, Hylurgus ligniperda in New Zealand and Ips pini in North America, to (i) assess the role of propagule pressure on colonization success, (ii) empirically test for Allee effects and (iii) estimate Allee thresholds. We evaluated each of these factors by experimentally testing the effect of propagule pressure (numbers released) on simulated tree colonization success in two different settings: (1) field conditions where beetles could disperse freely and (2) enclosed cages where dispersal loss was prevented. Colonization success was positively associated with numbers released (i.e. propagule pressure) for both species, though colonization occurred at lower numbers for H. ligniperda than for I. pini. A demographic Allee effect was only detected in H. ligniperda and the Allee threshold was smaller when beetles were released 1 m from host billets than when they were released 10 m away. Greater colonization success at lower release densities may explain the invasion success of H. ligniperda worldwide. Higher release densities required for successful colonization may explain why I. pini is a poor establisher. Synthesis and applications. Our results linking invasion failure to small founding population densities generally support the theoretical literature on the role of propagule pressure and Allee effects in biological invasions. Agencies such as the International Plant Protection Committee (IPPC) setting phytosanitary measures such as the International Standards for Phytosanitary Measures No. 15 (ISPM 15) should consider using the colonization thresholds estimated here to limit numbers of colonizing individuals below invasion thresholds. Additionally, agencies conducting trapping efforts at ports-of-entry should be aware of these thresholds and widely report when trapping numbers exceed these thresholds.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10618 - Ecology
Návaznosti výsledku
Projekt
<a href="/cs/project/EF16_019%2F0000803" target="_blank" >EF16_019/0000803: Excelentní Výzkum jako podpora Adaptace lesnictví a dřevařství na globální změnu a 4. průmyslovou revoluci</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Journal of Applied Ecology
ISSN
0021-8901
e-ISSN
0021-8901
Svazek periodika
60
Číslo periodika v rámci svazku
2
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
11
Strana od-do
342-352
Kód UT WoS článku
000888934900001
EID výsledku v databázi Scopus
2-s2.0-85142251233