Spatial Analysis of Dense LiDAR Point Clouds for Tree Species Group Classification Using Individual Tree Metrics
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60460709%3A41320%2F23%3A97154" target="_blank" >RIV/60460709:41320/23:97154 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.3390/f14081581" target="_blank" >http://dx.doi.org/10.3390/f14081581</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.3390/f14081581" target="_blank" >10.3390/f14081581</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Spatial Analysis of Dense LiDAR Point Clouds for Tree Species Group Classification Using Individual Tree Metrics
Popis výsledku v původním jazyce
This study presents a method of tree species classification using individual tree metrics derived from a three-dimensional point cloud from unmanned aerial vehicle laser scanning (ULS). In this novel approach, we evaluated the metrics of 1045 trees using generalized linear model (GLM) and random forest (RF) techniques to automatically assign individual trees into either a coniferous or broadleaf group. We evaluated several statistical descriptors, including a novel approach using the Clark-Evans spatial aggregation index (CE), which indicates the level of clustering in point clouds. A comparison of classifiers that included and excluded the CE indicator values demonstrated their importance for improved classification of the individual tree point clouds. The overall accuracy when including the CE index was 94.8% using a GLM approach and 95.1% using an RF approach. With the RF approach, the inclusion of CE yielded a significant improvement in overall classification accuracy, and for the GLM approach, the CE index was always selected as a significant variable for correct tree class prediction. Compared to other studies, the above-mentioned accuracies prove the benefits of CE for tree species classification, as do the worse results of excluding the CE, where the derived GLM achieved an accuracy of 92.6% and RF an accuracy of 93.8%.
Název v anglickém jazyce
Spatial Analysis of Dense LiDAR Point Clouds for Tree Species Group Classification Using Individual Tree Metrics
Popis výsledku anglicky
This study presents a method of tree species classification using individual tree metrics derived from a three-dimensional point cloud from unmanned aerial vehicle laser scanning (ULS). In this novel approach, we evaluated the metrics of 1045 trees using generalized linear model (GLM) and random forest (RF) techniques to automatically assign individual trees into either a coniferous or broadleaf group. We evaluated several statistical descriptors, including a novel approach using the Clark-Evans spatial aggregation index (CE), which indicates the level of clustering in point clouds. A comparison of classifiers that included and excluded the CE indicator values demonstrated their importance for improved classification of the individual tree point clouds. The overall accuracy when including the CE index was 94.8% using a GLM approach and 95.1% using an RF approach. With the RF approach, the inclusion of CE yielded a significant improvement in overall classification accuracy, and for the GLM approach, the CE index was always selected as a significant variable for correct tree class prediction. Compared to other studies, the above-mentioned accuracies prove the benefits of CE for tree species classification, as do the worse results of excluding the CE, where the derived GLM achieved an accuracy of 92.6% and RF an accuracy of 93.8%.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
40102 - Forestry
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
FORESTS
ISSN
1999-4907
e-ISSN
1999-4907
Svazek periodika
14
Číslo periodika v rámci svazku
8
Stát vydavatele periodika
CZ - Česká republika
Počet stran výsledku
16
Strana od-do
1-16
Kód UT WoS článku
001056697700001
EID výsledku v databázi Scopus
2-s2.0-85169040133