A Note on Statistical Techniques and Biological Background in Analysis of Remote Sensed Data in Forest Inventory
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60460709%3A41320%2F23%3A97939" target="_blank" >RIV/60460709:41320/23:97939 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.jstage.jst.go.jp/browse/formath/list/-char/en" target="_blank" >https://www.jstage.jst.go.jp/browse/formath/list/-char/en</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.15684/formath.22.003" target="_blank" >10.15684/formath.22.003</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
A Note on Statistical Techniques and Biological Background in Analysis of Remote Sensed Data in Forest Inventory
Popis výsledku v původním jazyce
In this work we discuss possibilities and challenges in utilization of several statistical methods for assessment of forest resources related to forest inventories, especially question of dataset size where the time and resources required for data collection are often in contrast to sample size and analysis of all potential parameters of potential models. The combination of a priori knowledge of the phenomena being studied (tree number, wood volume, etc.) and understanding of behavior of individual variables provided by remote sensing instruments (different predictor variables) is crucial for production of reliable models for forest resource assessment. Using our dataset, we compared two regression techniques and one machine learning for predictor analysis for wood volume estimation. All techniques in general provided similar results in terms of variable importance and accuracy, but in more detailed analysis differences appeared, indicating that if possible biological knowledge and understanding of variables should not be neglected.
Název v anglickém jazyce
A Note on Statistical Techniques and Biological Background in Analysis of Remote Sensed Data in Forest Inventory
Popis výsledku anglicky
In this work we discuss possibilities and challenges in utilization of several statistical methods for assessment of forest resources related to forest inventories, especially question of dataset size where the time and resources required for data collection are often in contrast to sample size and analysis of all potential parameters of potential models. The combination of a priori knowledge of the phenomena being studied (tree number, wood volume, etc.) and understanding of behavior of individual variables provided by remote sensing instruments (different predictor variables) is crucial for production of reliable models for forest resource assessment. Using our dataset, we compared two regression techniques and one machine learning for predictor analysis for wood volume estimation. All techniques in general provided similar results in terms of variable importance and accuracy, but in more detailed analysis differences appeared, indicating that if possible biological knowledge and understanding of variables should not be neglected.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20705 - Remote sensing
Návaznosti výsledku
Projekt
<a href="/cs/project/QK21010435" target="_blank" >QK21010435: Monitoring stavu a vývoje souší po kůrovcové kalamitě</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
FORMATH
ISSN
2188-5729
e-ISSN
2188-5729
Svazek periodika
22
Číslo periodika v rámci svazku
2023
Stát vydavatele periodika
JP - Japonsko
Počet stran výsledku
8
Strana od-do
1-8
Kód UT WoS článku
001126804800001
EID výsledku v databázi Scopus
—