Spatial interpolation of point velocities in stream cross-section
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60460709%3A41330%2F15%3A66990" target="_blank" >RIV/60460709:41330/15:66990 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1515/johh-2015-0006" target="_blank" >http://dx.doi.org/10.1515/johh-2015-0006</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1515/johh-2015-0006" target="_blank" >10.1515/johh-2015-0006</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Spatial interpolation of point velocities in stream cross-section
Popis výsledku v původním jazyce
The most frequently used instrument for measuring velocity distribution in the cross-section of small rivers is the propeller?type current meter. Output of measuring using this instrument is point data of a tiny bulk. Spatial interpolation of measured data should produce a dense velocity profile, which is not available from the measuring itself. This paper describes the preparation of interpolation models. Measuring campaign was realized to obtain operational data. It took place on real streams with different velocity distributions. Seven data sets were obtained from four cross-sections varying in the number of measuring points, 24?82. Following methods of interpolation of the data were used in the same context: methods of geometric interpolation arithmetic mean and inverse distance weighted, the method of fitting the trend to the data thin-plate spline and the geostatistical method of ordinary kriging. Calibration of interpolation models carried out in the computational program Scilab
Název v anglickém jazyce
Spatial interpolation of point velocities in stream cross-section
Popis výsledku anglicky
The most frequently used instrument for measuring velocity distribution in the cross-section of small rivers is the propeller?type current meter. Output of measuring using this instrument is point data of a tiny bulk. Spatial interpolation of measured data should produce a dense velocity profile, which is not available from the measuring itself. This paper describes the preparation of interpolation models. Measuring campaign was realized to obtain operational data. It took place on real streams with different velocity distributions. Seven data sets were obtained from four cross-sections varying in the number of measuring points, 24?82. Following methods of interpolation of the data were used in the same context: methods of geometric interpolation arithmetic mean and inverse distance weighted, the method of fitting the trend to the data thin-plate spline and the geostatistical method of ordinary kriging. Calibration of interpolation models carried out in the computational program Scilab
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
DA - Hydrologie a limnologie
OECD FORD obor
—
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2015
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Journal of Hydrology and Hydromechanics
ISSN
0042-790X
e-ISSN
—
Svazek periodika
63
Číslo periodika v rámci svazku
1
Stát vydavatele periodika
CZ - Česká republika
Počet stran výsledku
8
Strana od-do
21-28
Kód UT WoS článku
000356811500003
EID výsledku v databázi Scopus
—