Solving the nonlinear and nonstationary Richards equation with two-level adaptive domain decomposition ( dd -adaptivity)
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60460709%3A41330%2F15%3A67850" target="_blank" >RIV/60460709:41330/15:67850 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/68407700:21110/15:00242994
Výsledek na webu
<a href="http://dx.doi.org/10.1016/j.amc.2015.03.130" target="_blank" >http://dx.doi.org/10.1016/j.amc.2015.03.130</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.amc.2015.03.130" target="_blank" >10.1016/j.amc.2015.03.130</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Solving the nonlinear and nonstationary Richards equation with two-level adaptive domain decomposition ( dd -adaptivity)
Popis výsledku v původním jazyce
Modeling the transport processes in the vadose zone, e.g. modeling contaminant transport, the effect of the soil water regime on changes in soil structure and composition, plays an important role in predicting the reactions of soil biotopes to anthropogenic activities. Water flow is governed by the quasilinear Richards equation, while the constitutive laws are typically supplied by the van Genuchten model, which can be understood as a pore size distribution function. Certain materials with dominantly uniform pore sizes (e.g. coarse-grained materials) can exhibit ranges of constitutive function values within several orders of magnitude. Numerical approximation of the Richards equation requires sequential solutions of systems of linear equations arisingfrom discretization and linearization of the problem. Typically, in the case of two- and three-dimensional problems, it is necessary to solve huge systems of linear equations to obtain only a few local updates of the solution. Since the R
Název v anglickém jazyce
Solving the nonlinear and nonstationary Richards equation with two-level adaptive domain decomposition ( dd -adaptivity)
Popis výsledku anglicky
Modeling the transport processes in the vadose zone, e.g. modeling contaminant transport, the effect of the soil water regime on changes in soil structure and composition, plays an important role in predicting the reactions of soil biotopes to anthropogenic activities. Water flow is governed by the quasilinear Richards equation, while the constitutive laws are typically supplied by the van Genuchten model, which can be understood as a pore size distribution function. Certain materials with dominantly uniform pore sizes (e.g. coarse-grained materials) can exhibit ranges of constitutive function values within several orders of magnitude. Numerical approximation of the Richards equation requires sequential solutions of systems of linear equations arisingfrom discretization and linearization of the problem. Typically, in the case of two- and three-dimensional problems, it is necessary to solve huge systems of linear equations to obtain only a few local updates of the solution. Since the R
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
DA - Hydrologie a limnologie
OECD FORD obor
—
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2015
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
APPLIED MATHEMATICS AND COMPUTATION
ISSN
0096-3003
e-ISSN
—
Svazek periodika
2015
Číslo periodika v rámci svazku
267
Stát vydavatele periodika
CZ - Česká republika
Počet stran výsledku
16
Strana od-do
207-222
Kód UT WoS článku
000361571100017
EID výsledku v databázi Scopus
—