NUMERICAL SOLUTION OF THE RICHARDS EQUATION BASED CATCHMENT RUNOFF MODEL WITH DD-ADAPTIVITY ALGORITHM AND BOUSSINESQ EQUATION ESTIMATOR
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60460709%3A41330%2F17%3A74523" target="_blank" >RIV/60460709:41330/17:74523 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1556/606.2017.12.1.3" target="_blank" >http://dx.doi.org/10.1556/606.2017.12.1.3</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1556/606.2017.12.1.3" target="_blank" >10.1556/606.2017.12.1.3</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
NUMERICAL SOLUTION OF THE RICHARDS EQUATION BASED CATCHMENT RUNOFF MODEL WITH DD-ADAPTIVITY ALGORITHM AND BOUSSINESQ EQUATION ESTIMATOR
Popis výsledku v původním jazyce
This paper presents a pseudo-deterministic catchment runoff model based on the Richards equation model - the governing equation for subsurface flow. The subsurface flow in a catchment is described here by two-dimensional variably saturated flow (unsaturated and saturated). The governing equation is the Richards equation with a slight modification of the time derivative term, as considered e.g. by Neuman. The nonlinear nature of this problem appears in the unsaturated zone only, so it was possible to make use of adaptive domain decomposition algorithm. However delineating of the saturated zone boundary is a nonlinear computationally expensive issue. The simple one-dimensional Boussinesq equation was used here as a rough estimator of the saturated zone boundary. With this estimate the adaptive domain decomposition could always start with an optimal subdomain split, and thus it is now possible to avoid solving huge systems of linear equations in the initial iteration level. With this measure
Název v anglickém jazyce
NUMERICAL SOLUTION OF THE RICHARDS EQUATION BASED CATCHMENT RUNOFF MODEL WITH DD-ADAPTIVITY ALGORITHM AND BOUSSINESQ EQUATION ESTIMATOR
Popis výsledku anglicky
This paper presents a pseudo-deterministic catchment runoff model based on the Richards equation model - the governing equation for subsurface flow. The subsurface flow in a catchment is described here by two-dimensional variably saturated flow (unsaturated and saturated). The governing equation is the Richards equation with a slight modification of the time derivative term, as considered e.g. by Neuman. The nonlinear nature of this problem appears in the unsaturated zone only, so it was possible to make use of adaptive domain decomposition algorithm. However delineating of the saturated zone boundary is a nonlinear computationally expensive issue. The simple one-dimensional Boussinesq equation was used here as a rough estimator of the saturated zone boundary. With this estimate the adaptive domain decomposition could always start with an optimal subdomain split, and thus it is now possible to avoid solving huge systems of linear equations in the initial iteration level. With this measure
Klasifikace
Druh
J<sub>SC</sub> - Článek v periodiku v databázi SCOPUS
CEP obor
—
OECD FORD obor
10501 - Hydrology
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2017
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Pollack Periodica
ISSN
1788-1994
e-ISSN
—
Svazek periodika
12
Číslo periodika v rámci svazku
1
Stát vydavatele periodika
CZ - Česká republika
Počet stran výsledku
16
Strana od-do
29-44
Kód UT WoS článku
—
EID výsledku v databázi Scopus
2-s2.0-85018735878