Selecting appropriate variables for detecting grassland to cropland changes using high resolution satellite data
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60460709%3A41330%2F18%3A76827" target="_blank" >RIV/60460709:41330/18:76827 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/00216208:11310/18:10382092
Výsledek na webu
<a href="http://dx.doi.org/10.7717/peerj.5487" target="_blank" >http://dx.doi.org/10.7717/peerj.5487</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.7717/peerj.5487" target="_blank" >10.7717/peerj.5487</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Selecting appropriate variables for detecting grassland to cropland changes using high resolution satellite data
Popis výsledku v původním jazyce
Grassland is one of the most represented, while at the same time, ecologically endangered, land cover categories in the European Union. In view of the global climate change, detecting its change is growing in importance from both an environmental and a socio-economic point of view. A well-recognised tool for Land Use and Land Cover (LULC) Change Detection (CD), including grassland changes, is Remote Sensing (RS). An important aspect affecting the accuracy of change detection is finding the optimal indicators of LULC changes (i.e., variables). Inappropriately selected variables can produce inaccurate results burdened with a number of uncertainties. The aim of our study is to find the most suitable variables for the detection of grassland to cropland change, based on a pair of high resolution images acquired by the Landsat 8 satellite and from the vector database Land Parcel Identification System (LPIS). In total, 59 variables were used to create models using Generalised Linear Models (GLM), the qualit
Název v anglickém jazyce
Selecting appropriate variables for detecting grassland to cropland changes using high resolution satellite data
Popis výsledku anglicky
Grassland is one of the most represented, while at the same time, ecologically endangered, land cover categories in the European Union. In view of the global climate change, detecting its change is growing in importance from both an environmental and a socio-economic point of view. A well-recognised tool for Land Use and Land Cover (LULC) Change Detection (CD), including grassland changes, is Remote Sensing (RS). An important aspect affecting the accuracy of change detection is finding the optimal indicators of LULC changes (i.e., variables). Inappropriately selected variables can produce inaccurate results burdened with a number of uncertainties. The aim of our study is to find the most suitable variables for the detection of grassland to cropland change, based on a pair of high resolution images acquired by the Landsat 8 satellite and from the vector database Land Parcel Identification System (LPIS). In total, 59 variables were used to create models using Generalised Linear Models (GLM), the qualit
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20705 - Remote sensing
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2018
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
PeerJ
ISSN
2167-8359
e-ISSN
2167-8359
Svazek periodika
6
Číslo periodika v rámci svazku
e5487
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
20
Strana od-do
1-20
Kód UT WoS článku
000444048000001
EID výsledku v databázi Scopus
2-s2.0-85052879894