Assessing the ecotoxicity of ionic liquids on Vibrio fischeri using electrostatic potential descriptors
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60460709%3A41330%2F20%3A81825" target="_blank" >RIV/60460709:41330/20:81825 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.sciencedirect.com/science/article/pii/S0304389420307500?via%3Dihub" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0304389420307500?via%3Dihub</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.jhazmat.2020.122761" target="_blank" >10.1016/j.jhazmat.2020.122761</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Assessing the ecotoxicity of ionic liquids on Vibrio fischeri using electrostatic potential descriptors
Popis výsledku v původním jazyce
Ionic liquids (ILs) have attracted increasing attention both in the scientific community and the industry in the past two decades. Their risk of being inevitable released to ecosystem lights up the urgent research on their toxicity to the environment. To reduce the time and capital consumption on testing tremendous ILs ecotoxicity experimentally, it is essential to construct predictive models for estimating their toxicity. The objective of this study is to provide a new approach for evaluating the ecotoxicity of ILs. A comprehensive ecotoxicity dataset for Vibrio fischeri involving 142 ILs, was collected and investigated. The electrostatic potential surface areas (S-EP) of separate cations and anions of ILs were firstly applied to develop predictive models for ecotoxicity on Vibrio fischeri. In addition, an intelligent algorithm named extreme learning machine (ELM) was employed to establish the predictive model. The squared correlation coefficients (R-2), the average absolute error (AAE%) and the roo
Název v anglickém jazyce
Assessing the ecotoxicity of ionic liquids on Vibrio fischeri using electrostatic potential descriptors
Popis výsledku anglicky
Ionic liquids (ILs) have attracted increasing attention both in the scientific community and the industry in the past two decades. Their risk of being inevitable released to ecosystem lights up the urgent research on their toxicity to the environment. To reduce the time and capital consumption on testing tremendous ILs ecotoxicity experimentally, it is essential to construct predictive models for estimating their toxicity. The objective of this study is to provide a new approach for evaluating the ecotoxicity of ILs. A comprehensive ecotoxicity dataset for Vibrio fischeri involving 142 ILs, was collected and investigated. The electrostatic potential surface areas (S-EP) of separate cations and anions of ILs were firstly applied to develop predictive models for ecotoxicity on Vibrio fischeri. In addition, an intelligent algorithm named extreme learning machine (ELM) was employed to establish the predictive model. The squared correlation coefficients (R-2), the average absolute error (AAE%) and the roo
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10511 - Environmental sciences (social aspects to be 5.7)
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Journal of Hazardous Materials
ISSN
0304-3894
e-ISSN
1873-3336
Svazek periodika
397
Číslo periodika v rámci svazku
122761
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
9
Strana od-do
1-9
Kód UT WoS článku
000541927100037
EID výsledku v databázi Scopus
2-s2.0-85084241119