A comparative study of land subsidence susceptibility mapping of Tasuj plane, Iran, using boosted regression tree, random forest and classification and regression tree methods
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60460709%3A41330%2F20%3A82242" target="_blank" >RIV/60460709:41330/20:82242 - isvavai.cz</a>
Výsledek na webu
<a href="https://link.springer.com/article/10.1007%2Fs12665-020-08953-0" target="_blank" >https://link.springer.com/article/10.1007%2Fs12665-020-08953-0</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s12665-020-08953-0" target="_blank" >10.1007/s12665-020-08953-0</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
A comparative study of land subsidence susceptibility mapping of Tasuj plane, Iran, using boosted regression tree, random forest and classification and regression tree methods
Popis výsledku v původním jazyce
Land subsidence occurrence in the Tasuj plane is becoming more frequent and hazardous in the near future due to the water crisis. To mitigate damage caused by land subsidence events, it is necessary to determine the susceptible or prone areas. This study focuses on producing and comparing land subsidence susceptibility map (LSSM) using boosted regression tree (BRT), random forest (RF), and classification and regression tree (CART) approaches with twelve influencing variables, namely altitude, slope angle, aspect, groundwater level, groundwater level change, land cover, lithology, distance to fault, distance to stream, stream power index, topographic wetness index, and plan curvature. Moreover, by implementing the Relief-F feature selection method, the most important variables in LSSM procedure were identified. The performance of the adopted methods was assessed using the area under the receiver operating characteristics curve (AUROC) and statistical evaluation indexes. The results showed that all the
Název v anglickém jazyce
A comparative study of land subsidence susceptibility mapping of Tasuj plane, Iran, using boosted regression tree, random forest and classification and regression tree methods
Popis výsledku anglicky
Land subsidence occurrence in the Tasuj plane is becoming more frequent and hazardous in the near future due to the water crisis. To mitigate damage caused by land subsidence events, it is necessary to determine the susceptible or prone areas. This study focuses on producing and comparing land subsidence susceptibility map (LSSM) using boosted regression tree (BRT), random forest (RF), and classification and regression tree (CART) approaches with twelve influencing variables, namely altitude, slope angle, aspect, groundwater level, groundwater level change, land cover, lithology, distance to fault, distance to stream, stream power index, topographic wetness index, and plan curvature. Moreover, by implementing the Relief-F feature selection method, the most important variables in LSSM procedure were identified. The performance of the adopted methods was assessed using the area under the receiver operating characteristics curve (AUROC) and statistical evaluation indexes. The results showed that all the
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
50704 - Environmental sciences (social aspects)
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Environmental Earth Sciences
ISSN
1866-6280
e-ISSN
1866-6299
Svazek periodika
79
Číslo periodika v rámci svazku
10
Stát vydavatele periodika
CZ - Česká republika
Počet stran výsledku
12
Strana od-do
1-12
Kód UT WoS článku
000536301000005
EID výsledku v databázi Scopus
2-s2.0-85084519612