Habitats as predictors in species distribution models: Shall we use continuous or binary data?
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60460709%3A41330%2F22%3A91594" target="_blank" >RIV/60460709:41330/22:91594 - isvavai.cz</a>
Výsledek na webu
<a href="https://onlinelibrary.wiley.com/doi/10.1111/ecog.06022" target="_blank" >https://onlinelibrary.wiley.com/doi/10.1111/ecog.06022</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1111/ecog.06022" target="_blank" >10.1111/ecog.06022</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Habitats as predictors in species distribution models: Shall we use continuous or binary data?
Popis výsledku v původním jazyce
The representation of a land cover type (i.e. habitat) within an area is often used as an explanatory variable in species distribution models. However, it is possible that a simple binary presenceabsence of the suitable habitat might be the most important determinant of the presenceabsence of some species and, thus, be a better predictor of species occurrence than the continuous parameter (area). We hypothesize that the binary predictor is more suitable for relatively rare habitats (e.g. wetlands) while for common habitats (e.g. forests) the amount of the focal habitat is a better predictor. We used the Third Atlas of Breeding Birds in the Czech Republic as the source of species distribution data and CORINE Land Cover inventory as the source of the landcover information. To test our hypothesis, we fitted generalized linear models of 32 water and 32 forest bird species. Our results show that for water bird species, models using binary predictors (presence/absence of the habitat) performed better than
Název v anglickém jazyce
Habitats as predictors in species distribution models: Shall we use continuous or binary data?
Popis výsledku anglicky
The representation of a land cover type (i.e. habitat) within an area is often used as an explanatory variable in species distribution models. However, it is possible that a simple binary presenceabsence of the suitable habitat might be the most important determinant of the presenceabsence of some species and, thus, be a better predictor of species occurrence than the continuous parameter (area). We hypothesize that the binary predictor is more suitable for relatively rare habitats (e.g. wetlands) while for common habitats (e.g. forests) the amount of the focal habitat is a better predictor. We used the Third Atlas of Breeding Birds in the Czech Republic as the source of species distribution data and CORINE Land Cover inventory as the source of the landcover information. To test our hypothesis, we fitted generalized linear models of 32 water and 32 forest bird species. Our results show that for water bird species, models using binary predictors (presence/absence of the habitat) performed better than
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10619 - Biodiversity conservation
Návaznosti výsledku
Projekt
<a href="/cs/project/SS02030018" target="_blank" >SS02030018: Centrum pro krajinu a biodiverzitu</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Ecography
ISSN
0906-7590
e-ISSN
1600-0587
Svazek periodika
2022
Číslo periodika v rámci svazku
7
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
9
Strana od-do
1-9
Kód UT WoS článku
000782391400001
EID výsledku v databázi Scopus
2-s2.0-85128222211