Detecting characteristics of extreme precipitation events using regional and satellite-based precipitation gridded datasets over a region in Central Europe
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60460709%3A41330%2F22%3A91600" target="_blank" >RIV/60460709:41330/22:91600 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.sciencedirect.com/science/article/pii/S0048969722055966" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0048969722055966</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.scitotenv.2022.158497" target="_blank" >10.1016/j.scitotenv.2022.158497</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Detecting characteristics of extreme precipitation events using regional and satellite-based precipitation gridded datasets over a region in Central Europe
Popis výsledku v původním jazyce
Perception of the spatiotemporal events of extreme precipitation and their variations is essential for diminishing the natural hazards linked with extreme events. In this research, a satellite based precipitation dataset derived from remotely sensed soil moisture (SM2RAIN ASCAT, obtained from ASCAT satellite soil moisture data through the Soil Moisture to Rain algorithm) was selected to evaluate the accuracy of daily precipitation and extreme events estimations against a regional gridded weather dataset by employing various performance indicators, and ETCCDI indicators (CDD, and CWD, SDII, R10mm, R20mm, R95p, R99p, Rx1day, and Rx5day). The study area includes entire Poland as well as small parts of Ukraine, Belarus, Slovakia, the Czech Republic, Russia, and Germany. According to PBIAS minus 3,9 percent) and coefficient of correlation (0,74), SM2RAINASCAT has good accuracy in the study area. Assessments reveal that, in general, over southern, mountainous part SM2RAIN-ASCAT does not have accurate estim
Název v anglickém jazyce
Detecting characteristics of extreme precipitation events using regional and satellite-based precipitation gridded datasets over a region in Central Europe
Popis výsledku anglicky
Perception of the spatiotemporal events of extreme precipitation and their variations is essential for diminishing the natural hazards linked with extreme events. In this research, a satellite based precipitation dataset derived from remotely sensed soil moisture (SM2RAIN ASCAT, obtained from ASCAT satellite soil moisture data through the Soil Moisture to Rain algorithm) was selected to evaluate the accuracy of daily precipitation and extreme events estimations against a regional gridded weather dataset by employing various performance indicators, and ETCCDI indicators (CDD, and CWD, SDII, R10mm, R20mm, R95p, R99p, Rx1day, and Rx5day). The study area includes entire Poland as well as small parts of Ukraine, Belarus, Slovakia, the Czech Republic, Russia, and Germany. According to PBIAS minus 3,9 percent) and coefficient of correlation (0,74), SM2RAINASCAT has good accuracy in the study area. Assessments reveal that, in general, over southern, mountainous part SM2RAIN-ASCAT does not have accurate estim
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10511 - Environmental sciences (social aspects to be 5.7)
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Science of the Total Environment
ISSN
0048-9697
e-ISSN
1879-1026
Svazek periodika
2022
Číslo periodika v rámci svazku
852
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
9
Strana od-do
1-9
Kód UT WoS článku
000888813000006
EID výsledku v databázi Scopus
2-s2.0-85137271544