Assessing Extremes in Hydroclimatology: A Review on Probabilistic Methods
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60460709%3A41330%2F22%3A91617" target="_blank" >RIV/60460709:41330/22:91617 - isvavai.cz</a>
Výsledek na webu
<a href="https://www-sciencedirect-com.cyber.usask.ca/science/article/pii/S0022169421013524?via%3Dihub" target="_blank" >https://www-sciencedirect-com.cyber.usask.ca/science/article/pii/S0022169421013524?via%3Dihub</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.jhydrol.2021.127302" target="_blank" >10.1016/j.jhydrol.2021.127302</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Assessing Extremes in Hydroclimatology: A Review on Probabilistic Methods
Popis výsledku v původním jazyce
Here we review methods used for probabilistic analysis of extreme events in Hydroclimatology. We focus on streamflow, precipitation, and temperature extremes at regional and global scales. The review has four thematic sections: 1 probability distributions used to describe hydroclimatic extremes, 2 comparative studies of parameter estimation methods, 3 non stationarity approaches, and 4 model selection tools. Synthesis of the literature shows that: 1 recent studies, in general, agree that precipitation and streamflow extremes should be described by heavy tailed distributions, 2 the Method of Moments is typically the first choice in estimating distribution parameters but it is outperformed by methods such as L Moments LM, Maximum Likelihood ML, Least Squares LS, and Bayesian Markov Chain Monte Carlo BMCMC, 3 there are less popular parameter estimation techniques such as the Maximum Product of Spacings MPS the Elemental Percentile EP, and the Minimum Density Power Divergence Estimator MDPDE that have s
Název v anglickém jazyce
Assessing Extremes in Hydroclimatology: A Review on Probabilistic Methods
Popis výsledku anglicky
Here we review methods used for probabilistic analysis of extreme events in Hydroclimatology. We focus on streamflow, precipitation, and temperature extremes at regional and global scales. The review has four thematic sections: 1 probability distributions used to describe hydroclimatic extremes, 2 comparative studies of parameter estimation methods, 3 non stationarity approaches, and 4 model selection tools. Synthesis of the literature shows that: 1 recent studies, in general, agree that precipitation and streamflow extremes should be described by heavy tailed distributions, 2 the Method of Moments is typically the first choice in estimating distribution parameters but it is outperformed by methods such as L Moments LM, Maximum Likelihood ML, Least Squares LS, and Bayesian Markov Chain Monte Carlo BMCMC, 3 there are less popular parameter estimation techniques such as the Maximum Product of Spacings MPS the Elemental Percentile EP, and the Minimum Density Power Divergence Estimator MDPDE that have s
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10505 - Geology
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Journal of Hydrology
ISSN
0022-1694
e-ISSN
1879-2707
Svazek periodika
2022
Číslo periodika v rámci svazku
605
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
20
Strana od-do
1-20
Kód UT WoS článku
000752473800001
EID výsledku v databázi Scopus
2-s2.0-85121921987