Informing Stochastic Streamflow Generation by Large Scale Climate Indices at Single and Multiple Sites
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60460709%3A41330%2F22%3A91622" target="_blank" >RIV/60460709:41330/22:91622 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.sciencedirect.com/science/article/abs/pii/S0309170821001913?via%3Dihub" target="_blank" >https://www.sciencedirect.com/science/article/abs/pii/S0309170821001913?via%3Dihub</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.advwatres.2021.104037" target="_blank" >10.1016/j.advwatres.2021.104037</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Informing Stochastic Streamflow Generation by Large Scale Climate Indices at Single and Multiple Sites
Popis výsledku v původním jazyce
Despite the existence of several stochastic streamflow generators, not much attention has been given to representing the impacts of large scale climate indices on seasonal to interannual streamflow variability. By merging a formal predictor selection scheme with vine copulas, we propose a generic approach to explicitly incorporate large scale climate indices in ensemble streamflow generation at single and multiple sites and in both short term prediction and long term projection modes. The proposed framework is applied at three headwater streams in the Oldman River Basin in southern Alberta, Canada. The results demonstrate higher skills than existing models both in terms of representing intra and inter annual variability, as well as accuracy and predictability of streamflow, particularly during high flow seasons. The proposed algorithm presents a globally relevant scheme for the stochastic streamflow generation, where the impacts of large scale climate indices on streamflow variability across time and
Název v anglickém jazyce
Informing Stochastic Streamflow Generation by Large Scale Climate Indices at Single and Multiple Sites
Popis výsledku anglicky
Despite the existence of several stochastic streamflow generators, not much attention has been given to representing the impacts of large scale climate indices on seasonal to interannual streamflow variability. By merging a formal predictor selection scheme with vine copulas, we propose a generic approach to explicitly incorporate large scale climate indices in ensemble streamflow generation at single and multiple sites and in both short term prediction and long term projection modes. The proposed framework is applied at three headwater streams in the Oldman River Basin in southern Alberta, Canada. The results demonstrate higher skills than existing models both in terms of representing intra and inter annual variability, as well as accuracy and predictability of streamflow, particularly during high flow seasons. The proposed algorithm presents a globally relevant scheme for the stochastic streamflow generation, where the impacts of large scale climate indices on streamflow variability across time and
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10511 - Environmental sciences (social aspects to be 5.7)
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
ADVANCES IN WATER RESOURCES
ISSN
0309-1708
e-ISSN
1872-9657
Svazek periodika
2022
Číslo periodika v rámci svazku
156
Stát vydavatele periodika
CZ - Česká republika
Počet stran výsledku
18
Strana od-do
1-18
Kód UT WoS článku
000700574900005
EID výsledku v databázi Scopus
2-s2.0-85114922649