Life cycle thinking and machine learning for urban metabolism assessment and prediction
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60460709%3A41330%2F22%3A94137" target="_blank" >RIV/60460709:41330/22:94137 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.mdpi.com/2073-4441/14/13/2005" target="_blank" >https://www.mdpi.com/2073-4441/14/13/2005</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.scs.2022.103754" target="_blank" >10.1016/j.scs.2022.103754</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Life cycle thinking and machine learning for urban metabolism assessment and prediction
Popis výsledku v původním jazyce
The real-world urban systems represent nonlinear, dynamical, and interconnected urban processes that require better management of their complexity. Thereby, we need to understand, measure, and assess the structure and functioning of the urban processes. We propose an innovative and novel evidence based methodology to manage the complexity of urban processes, that can enhance their resilience as part of the concept of smart and regenerative urban metabolism with the overarching intention to better achieve sustainability. We couple Life Cycle Thinking and Machine Learning to measure and assess the metabolic processes of the urban core of Lisbons functional urban area using multidimensional indicators and measures incorporating urban ecosystem services dynamics. We built and trained a multilayer perceptron (MLP) network to identify the metabolic drivers and predict the metabolic changes for the near future (2025). The prediction models performance was validated using the standard deviations of the predi
Název v anglickém jazyce
Life cycle thinking and machine learning for urban metabolism assessment and prediction
Popis výsledku anglicky
The real-world urban systems represent nonlinear, dynamical, and interconnected urban processes that require better management of their complexity. Thereby, we need to understand, measure, and assess the structure and functioning of the urban processes. We propose an innovative and novel evidence based methodology to manage the complexity of urban processes, that can enhance their resilience as part of the concept of smart and regenerative urban metabolism with the overarching intention to better achieve sustainability. We couple Life Cycle Thinking and Machine Learning to measure and assess the metabolic processes of the urban core of Lisbons functional urban area using multidimensional indicators and measures incorporating urban ecosystem services dynamics. We built and trained a multilayer perceptron (MLP) network to identify the metabolic drivers and predict the metabolic changes for the near future (2025). The prediction models performance was validated using the standard deviations of the predi
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20102 - Construction engineering, Municipal and structural engineering
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Sustainable Cities and Society
ISSN
2210-6707
e-ISSN
2210-6715
Svazek periodika
2022
Číslo periodika v rámci svazku
80
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
23
Strana od-do
1-23
Kód UT WoS článku
000780381200002
EID výsledku v databázi Scopus
2-s2.0-85124386598