Changes of Extreme Precipitation in CMIP6 Projections: Should We Use Stationary or Nonstationary Models?
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60460709%3A41330%2F23%3A97216" target="_blank" >RIV/60460709:41330/23:97216 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1175/JCLI-D-22-0467.1" target="_blank" >http://dx.doi.org/10.1175/JCLI-D-22-0467.1</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1175/JCLI-D-22-0467.1" target="_blank" >10.1175/JCLI-D-22-0467.1</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Changes of Extreme Precipitation in CMIP6 Projections: Should We Use Stationary or Nonstationary Models?
Popis výsledku v původním jazyce
With global warming, the behavior of extreme precipitation shifts toward nonstationarity. Here, we analyze the annual maxima of daily precipitation (AMP) all over the globe using projections of the latest phase of the Coupled corrected using a semiparametric quantile mapping, a novel technique extended to extreme precipitation. This analysis 1) explores the variability of future AMP globally and 2) investigates the performance of stationary and nonstationary models in describing future AMP with trends. The results show that global warming potentially intensifies AMP. For the nonparametric analysis, the 33-yr precipitation levels are increasing up to 33.2 mm compared to the historical period. The parametric analysis shows that the return period of 100-yr historical events will decrease approximately to 50 and 70 years in the Northern and Southern Hemispheres, respectively. Under the highest emission scenario, the projected 100-yr levels are expected to increase by 7.5%-21% over the historical levels. Using stationary models to estimate the 100-yr return level for AMP projections with trends leads to an underestimation of 3.4% on average. Extensive Monte Carlo experiments are implemented to explain this underestimation.
Název v anglickém jazyce
Changes of Extreme Precipitation in CMIP6 Projections: Should We Use Stationary or Nonstationary Models?
Popis výsledku anglicky
With global warming, the behavior of extreme precipitation shifts toward nonstationarity. Here, we analyze the annual maxima of daily precipitation (AMP) all over the globe using projections of the latest phase of the Coupled corrected using a semiparametric quantile mapping, a novel technique extended to extreme precipitation. This analysis 1) explores the variability of future AMP globally and 2) investigates the performance of stationary and nonstationary models in describing future AMP with trends. The results show that global warming potentially intensifies AMP. For the nonparametric analysis, the 33-yr precipitation levels are increasing up to 33.2 mm compared to the historical period. The parametric analysis shows that the return period of 100-yr historical events will decrease approximately to 50 and 70 years in the Northern and Southern Hemispheres, respectively. Under the highest emission scenario, the projected 100-yr levels are expected to increase by 7.5%-21% over the historical levels. Using stationary models to estimate the 100-yr return level for AMP projections with trends leads to an underestimation of 3.4% on average. Extensive Monte Carlo experiments are implemented to explain this underestimation.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10509 - Meteorology and atmospheric sciences
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
JOURNAL OF CLIMATE
ISSN
0894-8755
e-ISSN
0894-8755
Svazek periodika
36
Číslo periodika v rámci svazku
9
Stát vydavatele periodika
CZ - Česká republika
Počet stran výsledku
16
Strana od-do
2999-3014
Kód UT WoS článku
000964667100001
EID výsledku v databázi Scopus
2-s2.0-85158866965