Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Streamflow simulation in poorly gauged basins with regionalised assimilation using Kalman filter

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60460709%3A41330%2F23%3A97279" target="_blank" >RIV/60460709:41330/23:97279 - isvavai.cz</a>

  • Nalezeny alternativní kódy

    RIV/00020711:_____/23:10155050

  • Výsledek na webu

    <a href="http://dx.doi.org/10.1016/j.jhydrol.2023.129373" target="_blank" >http://dx.doi.org/10.1016/j.jhydrol.2023.129373</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.jhydrol.2023.129373" target="_blank" >10.1016/j.jhydrol.2023.129373</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Streamflow simulation in poorly gauged basins with regionalised assimilation using Kalman filter

  • Popis výsledku v původním jazyce

    The streamflow estimation in ungauged or poorly gauged basins is a fundamental and challenging problem in hydrology, which has often been solved by transferring hydrological information from gauged basins (i.e. by regionalisation). Most studies on streamflow regionalisation focus on identifying the best methods to transfer the hydrologic model parameters and uses primarily physiographic attributes or climate information for these purposes. In the present study, the sequential data assimilation method - the Kalman filter - has been used to determine streamflow in a poorly gauged (unknown) basin to combine, in an optimal way, observations of neighbouring basins and model simulation of a given basin. The methodology is based on the concept of concatenated upstream catchments, where the aggregation of unobserved states can be estimated. The streamflow estimate is further divided between the unknown sub-catchments using linear regression on the catchments' hydrological characteristics, which are subsequently used to approximate error statistics and operators in the Kalman filter application. The results were evaluated on 165 catchments in the Czech Republic using RMSE, MASE and MAE criteria and indicate that in 87.3% of the cases, the proposed methodology improved the accuracy of streamflow estimations by an average of 40% (in combined evaluated measurements) compared to the original simulations within the system for drought monitoring and forecasting in the Czech Republic 'HAMR'.

  • Název v anglickém jazyce

    Streamflow simulation in poorly gauged basins with regionalised assimilation using Kalman filter

  • Popis výsledku anglicky

    The streamflow estimation in ungauged or poorly gauged basins is a fundamental and challenging problem in hydrology, which has often been solved by transferring hydrological information from gauged basins (i.e. by regionalisation). Most studies on streamflow regionalisation focus on identifying the best methods to transfer the hydrologic model parameters and uses primarily physiographic attributes or climate information for these purposes. In the present study, the sequential data assimilation method - the Kalman filter - has been used to determine streamflow in a poorly gauged (unknown) basin to combine, in an optimal way, observations of neighbouring basins and model simulation of a given basin. The methodology is based on the concept of concatenated upstream catchments, where the aggregation of unobserved states can be estimated. The streamflow estimate is further divided between the unknown sub-catchments using linear regression on the catchments' hydrological characteristics, which are subsequently used to approximate error statistics and operators in the Kalman filter application. The results were evaluated on 165 catchments in the Czech Republic using RMSE, MASE and MAE criteria and indicate that in 87.3% of the cases, the proposed methodology improved the accuracy of streamflow estimations by an average of 40% (in combined evaluated measurements) compared to the original simulations within the system for drought monitoring and forecasting in the Czech Republic 'HAMR'.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10511 - Environmental sciences (social aspects to be 5.7)

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/SS02030027" target="_blank" >SS02030027: Vodní systémy a vodní hospodářství v ČR v podmínkách změny klimatu</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2023

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Journal of Hydrology

  • ISSN

    0022-1694

  • e-ISSN

    0022-1694

  • Svazek periodika

    620

  • Číslo periodika v rámci svazku

    129373

  • Stát vydavatele periodika

    NL - Nizozemsko

  • Počet stran výsledku

    13

  • Strana od-do

    1-13

  • Kód UT WoS článku

    001029671200001

  • EID výsledku v databázi Scopus

    2-s2.0-85151405499