Streamflow simulation in poorly gauged basins with regionalised assimilation using Kalman filter
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60460709%3A41330%2F23%3A97279" target="_blank" >RIV/60460709:41330/23:97279 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/00020711:_____/23:10155050
Výsledek na webu
<a href="http://dx.doi.org/10.1016/j.jhydrol.2023.129373" target="_blank" >http://dx.doi.org/10.1016/j.jhydrol.2023.129373</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.jhydrol.2023.129373" target="_blank" >10.1016/j.jhydrol.2023.129373</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Streamflow simulation in poorly gauged basins with regionalised assimilation using Kalman filter
Popis výsledku v původním jazyce
The streamflow estimation in ungauged or poorly gauged basins is a fundamental and challenging problem in hydrology, which has often been solved by transferring hydrological information from gauged basins (i.e. by regionalisation). Most studies on streamflow regionalisation focus on identifying the best methods to transfer the hydrologic model parameters and uses primarily physiographic attributes or climate information for these purposes. In the present study, the sequential data assimilation method - the Kalman filter - has been used to determine streamflow in a poorly gauged (unknown) basin to combine, in an optimal way, observations of neighbouring basins and model simulation of a given basin. The methodology is based on the concept of concatenated upstream catchments, where the aggregation of unobserved states can be estimated. The streamflow estimate is further divided between the unknown sub-catchments using linear regression on the catchments' hydrological characteristics, which are subsequently used to approximate error statistics and operators in the Kalman filter application. The results were evaluated on 165 catchments in the Czech Republic using RMSE, MASE and MAE criteria and indicate that in 87.3% of the cases, the proposed methodology improved the accuracy of streamflow estimations by an average of 40% (in combined evaluated measurements) compared to the original simulations within the system for drought monitoring and forecasting in the Czech Republic 'HAMR'.
Název v anglickém jazyce
Streamflow simulation in poorly gauged basins with regionalised assimilation using Kalman filter
Popis výsledku anglicky
The streamflow estimation in ungauged or poorly gauged basins is a fundamental and challenging problem in hydrology, which has often been solved by transferring hydrological information from gauged basins (i.e. by regionalisation). Most studies on streamflow regionalisation focus on identifying the best methods to transfer the hydrologic model parameters and uses primarily physiographic attributes or climate information for these purposes. In the present study, the sequential data assimilation method - the Kalman filter - has been used to determine streamflow in a poorly gauged (unknown) basin to combine, in an optimal way, observations of neighbouring basins and model simulation of a given basin. The methodology is based on the concept of concatenated upstream catchments, where the aggregation of unobserved states can be estimated. The streamflow estimate is further divided between the unknown sub-catchments using linear regression on the catchments' hydrological characteristics, which are subsequently used to approximate error statistics and operators in the Kalman filter application. The results were evaluated on 165 catchments in the Czech Republic using RMSE, MASE and MAE criteria and indicate that in 87.3% of the cases, the proposed methodology improved the accuracy of streamflow estimations by an average of 40% (in combined evaluated measurements) compared to the original simulations within the system for drought monitoring and forecasting in the Czech Republic 'HAMR'.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10511 - Environmental sciences (social aspects to be 5.7)
Návaznosti výsledku
Projekt
<a href="/cs/project/SS02030027" target="_blank" >SS02030027: Vodní systémy a vodní hospodářství v ČR v podmínkách změny klimatu</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Journal of Hydrology
ISSN
0022-1694
e-ISSN
0022-1694
Svazek periodika
620
Číslo periodika v rámci svazku
129373
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
13
Strana od-do
1-13
Kód UT WoS článku
001029671200001
EID výsledku v databázi Scopus
2-s2.0-85151405499