Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Effects of extreme events on land-use-related decisions of farmers in Eastern Austria: the role of learning

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60460709%3A41330%2F23%3A97535" target="_blank" >RIV/60460709:41330/23:97535 - isvavai.cz</a>

  • Výsledek na webu

    <a href="http://dx.doi.org/10.1007/s13593-023-00890-z" target="_blank" >http://dx.doi.org/10.1007/s13593-023-00890-z</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/s13593-023-00890-z" target="_blank" >10.1007/s13593-023-00890-z</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Effects of extreme events on land-use-related decisions of farmers in Eastern Austria: the role of learning

  • Popis výsledku v původním jazyce

    European farm households will face increasingly challenging conditions in the coming decades due to climate change, as the frequency and severity of extreme weather events rise. This study assesses the complex interrelations between external framework conditions such as climate change or adjustments in the agricultural price and subsidy schemes with farmers' decision-making. As social aspects remain understudied drivers for agricultural decisions, we also consider value-based characteristics of farmers as internal factors relevant for decision-making. We integrate individual learning as response to extreme weather events into an agent-based model that simulates farmers' decision-making. We applied the model to a region in Eastern Austria that already experiences water scarcity and increasing drought risk from climate change and simulated three future scenarios to compare the effects of changes in socio-economic and climatic conditions. In a cross-comparison, we then investigated how farmers can navigate these changes through individual adaptation. The agricultural trajectories project a decline of active farms between -27 and -37% accompanied by a reduction of agricultural area between -20 and -30% until 2053. The results show that regardless of the scenario conditions, adaptation through learning moderates the decline in the number of active farms and farmland compared to scenarios without adaptive learning. However, adaptation increases the workload of farmers. This highlights the need for labor support for farms.

  • Název v anglickém jazyce

    Effects of extreme events on land-use-related decisions of farmers in Eastern Austria: the role of learning

  • Popis výsledku anglicky

    European farm households will face increasingly challenging conditions in the coming decades due to climate change, as the frequency and severity of extreme weather events rise. This study assesses the complex interrelations between external framework conditions such as climate change or adjustments in the agricultural price and subsidy schemes with farmers' decision-making. As social aspects remain understudied drivers for agricultural decisions, we also consider value-based characteristics of farmers as internal factors relevant for decision-making. We integrate individual learning as response to extreme weather events into an agent-based model that simulates farmers' decision-making. We applied the model to a region in Eastern Austria that already experiences water scarcity and increasing drought risk from climate change and simulated three future scenarios to compare the effects of changes in socio-economic and climatic conditions. In a cross-comparison, we then investigated how farmers can navigate these changes through individual adaptation. The agricultural trajectories project a decline of active farms between -27 and -37% accompanied by a reduction of agricultural area between -20 and -30% until 2053. The results show that regardless of the scenario conditions, adaptation through learning moderates the decline in the number of active farms and farmland compared to scenarios without adaptive learning. However, adaptation increases the workload of farmers. This highlights the need for labor support for farms.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    40106 - Agronomy, plant breeding and plant protection; (Agricultural biotechnology to be 4.4)

Návaznosti výsledku

  • Projekt

  • Návaznosti

    S - Specificky vyzkum na vysokych skolach

Ostatní

  • Rok uplatnění

    2023

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Agronomy for Sustainable Development

  • ISSN

    1774-0746

  • e-ISSN

    1774-0746

  • Svazek periodika

    43

  • Číslo periodika v rámci svazku

    3

  • Stát vydavatele periodika

    CZ - Česká republika

  • Počet stran výsledku

    17

  • Strana od-do

    1-17

  • Kód UT WoS článku

    000985753200001

  • EID výsledku v databázi Scopus

    2-s2.0-85159171884