Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Revitalizing microbial fuel cells: A comprehensive review on the transformative role of iron-based materials in electrode design and catalyst development

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60460709%3A41330%2F24%3A98299" target="_blank" >RIV/60460709:41330/24:98299 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://doi.org/10.1016/j.cej.2024.151323" target="_blank" >https://doi.org/10.1016/j.cej.2024.151323</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.cej.2024.151323" target="_blank" >10.1016/j.cej.2024.151323</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Revitalizing microbial fuel cells: A comprehensive review on the transformative role of iron-based materials in electrode design and catalyst development

  • Popis výsledku v původním jazyce

    Microbial fuel cells (MFCs) face substantial challenges, including electrode cost, biofouling, and slow kinetics of the oxygen reduction reaction (ORR) at the cathode. This review examines iron-based (Fe-based) materials as electrodes and catalysts, emphasizing their efficacy in pollutant degradation and electricity generation. As anode modifiers, Fe-based materials enhance electrical energy production by improving electron transport, increasing anode voltage, and promoting microbial adhesion. At the cathode, they facilitate a more efficient 4-electron transfer process for the ORR, reducing undesirable hydrogen peroxide formation. This review discusses the impact of Fe and N dispersion, surface, and active site optimization on ORR activity and stability, highlighting the advantages of Fe-based materials in terms of stability, reproducibility, and biocompatibility through multi- element doping and nanoscale interface engineering. These modifications enable Fe-based materials to outperform traditional Pt/C catalysts in power density. The role of microbial communities, including Geobacter and Pseudomonas, , in electron transfer and wastewater treatment in Fe-based MFCs is also addressed. Additionally, the potential of artificial intelligence (AI) to optimize operational and catalyst performance in enhancing Fe-based MFC efficiency is explored. This review concludes with a comprehensive assessment of Fe-based materials in MFCs, focusing on their contributions to sustainable energy and water purification by examining bioelectricity generation, fabrication costs, and power output, thereby providing a holistic overview of the advancement of Fe- based materials for environmentally sustainable applications.

  • Název v anglickém jazyce

    Revitalizing microbial fuel cells: A comprehensive review on the transformative role of iron-based materials in electrode design and catalyst development

  • Popis výsledku anglicky

    Microbial fuel cells (MFCs) face substantial challenges, including electrode cost, biofouling, and slow kinetics of the oxygen reduction reaction (ORR) at the cathode. This review examines iron-based (Fe-based) materials as electrodes and catalysts, emphasizing their efficacy in pollutant degradation and electricity generation. As anode modifiers, Fe-based materials enhance electrical energy production by improving electron transport, increasing anode voltage, and promoting microbial adhesion. At the cathode, they facilitate a more efficient 4-electron transfer process for the ORR, reducing undesirable hydrogen peroxide formation. This review discusses the impact of Fe and N dispersion, surface, and active site optimization on ORR activity and stability, highlighting the advantages of Fe-based materials in terms of stability, reproducibility, and biocompatibility through multi- element doping and nanoscale interface engineering. These modifications enable Fe-based materials to outperform traditional Pt/C catalysts in power density. The role of microbial communities, including Geobacter and Pseudomonas, , in electron transfer and wastewater treatment in Fe-based MFCs is also addressed. Additionally, the potential of artificial intelligence (AI) to optimize operational and catalyst performance in enhancing Fe-based MFC efficiency is explored. This review concludes with a comprehensive assessment of Fe-based materials in MFCs, focusing on their contributions to sustainable energy and water purification by examining bioelectricity generation, fabrication costs, and power output, thereby providing a holistic overview of the advancement of Fe- based materials for environmentally sustainable applications.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10511 - Environmental sciences (social aspects to be 5.7)

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/GA22-31921S" target="_blank" >GA22-31921S: Mechanismus mobility a transformace pesticidů na rozhraní kořeny/půda v rhizosféře mokřadů</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2024

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    CHEMICAL ENGINEERING JOURNAL

  • ISSN

    1385-8947

  • e-ISSN

    1385-8947

  • Svazek periodika

    489

  • Číslo periodika v rámci svazku

    151323

  • Stát vydavatele periodika

    CZ - Česká republika

  • Počet stran výsledku

    20

  • Strana od-do

    1-20

  • Kód UT WoS článku

    001291652900001

  • EID výsledku v databázi Scopus

    2-s2.0-85190827747