Grab to fill the gap: key factors influencing <i>Reynoutria japonica</i> germination and seedling establishment in the secondary distribution range
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60460709%3A41330%2F24%3A98378" target="_blank" >RIV/60460709:41330/24:98378 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1007/s11258-024-01438-1" target="_blank" >https://doi.org/10.1007/s11258-024-01438-1</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s11258-024-01438-1" target="_blank" >10.1007/s11258-024-01438-1</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Grab to fill the gap: key factors influencing <i>Reynoutria japonica</i> germination and seedling establishment in the secondary distribution range
Popis výsledku v původním jazyce
Reynoutria japonica (Japanese knotweed) is a highly invasive female plant that primarily reproduces through vegetative regeneration during secondary distribution. Despite producing a substantial number of viable hybrid seeds, the occurrence of seedlings and young plants in the wild remains rare; the reasons for this rarity are unclear. Environmental intolerance and chromosomal anomalies during hybridisation can impede seedling development. This study evaluates the combined impact of these factors by examining substrate, temperature, and light effects on germination, as well as assessing seedling genome sizes and viability. Seeds were cultivated in both natural and controlled environments to manage external influences. Flow cytometry was employed to evaluate chromosomal arrangements. The final germination was notably high at 99%, and 68% of seedlings thrived under controlled conditions, emphasising hybrid seedling viability regardless of highly polyploid levels ranging from pentaploid to aneuploid (2C DNA genome size from 5.17 to 11.95 pg). Thus, it is evident that seeds can germinate and produce vital seedlings despite various chromosomal sets. Even fluctuating temperatures and type of substrate do not limit seed germination. However, these results were obtained under laboratory conditions, with seeds and seedlings receiving regular irrigation. A significant seedling mortality rate (99%) was observed in the field experiment, and the final germination was also low there (15%). Observations suggest that water stress might be the cause of this mortality. Further research on water stress is necessary because it could be the primary factor limiting the successful generative spread of the knotweeds.
Název v anglickém jazyce
Grab to fill the gap: key factors influencing <i>Reynoutria japonica</i> germination and seedling establishment in the secondary distribution range
Popis výsledku anglicky
Reynoutria japonica (Japanese knotweed) is a highly invasive female plant that primarily reproduces through vegetative regeneration during secondary distribution. Despite producing a substantial number of viable hybrid seeds, the occurrence of seedlings and young plants in the wild remains rare; the reasons for this rarity are unclear. Environmental intolerance and chromosomal anomalies during hybridisation can impede seedling development. This study evaluates the combined impact of these factors by examining substrate, temperature, and light effects on germination, as well as assessing seedling genome sizes and viability. Seeds were cultivated in both natural and controlled environments to manage external influences. Flow cytometry was employed to evaluate chromosomal arrangements. The final germination was notably high at 99%, and 68% of seedlings thrived under controlled conditions, emphasising hybrid seedling viability regardless of highly polyploid levels ranging from pentaploid to aneuploid (2C DNA genome size from 5.17 to 11.95 pg). Thus, it is evident that seeds can germinate and produce vital seedlings despite various chromosomal sets. Even fluctuating temperatures and type of substrate do not limit seed germination. However, these results were obtained under laboratory conditions, with seeds and seedlings receiving regular irrigation. A significant seedling mortality rate (99%) was observed in the field experiment, and the final germination was also low there (15%). Observations suggest that water stress might be the cause of this mortality. Further research on water stress is necessary because it could be the primary factor limiting the successful generative spread of the knotweeds.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10511 - Environmental sciences (social aspects to be 5.7)
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Plant Ecology
ISSN
1385-0237
e-ISSN
1385-0237
Svazek periodika
225
Číslo periodika v rámci svazku
8
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
11
Strana od-do
863-873
Kód UT WoS článku
001248435100001
EID výsledku v databázi Scopus
2-s2.0-85196034466