Phase Mixture Models for the Thermal Conductivity of Nanofluids and Nanocrystalline Solids
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60461373%3A22310%2F09%3A00021605" target="_blank" >RIV/60461373:22310/09:00021605 - isvavai.cz</a>
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Phase Mixture Models for the Thermal Conductivity of Nanofluids and Nanocrystalline Solids
Popis výsledku v původním jazyce
Nanofluids exhibit enhanced thermal conductivity with decreasing particle size, while nanocrystalline solids show a thermal conductivity reduction with decreasing grain size. Both phenomena can be modeled as being due to a boundary phase acting as a thermal bridge or barrier, respectively. In this paper a new phase mixture model is presented, based on a ?mixed average? of the upper and lower Wiener bounds. It is shown that in the case of alumina-water nanofluids our model is able to describe very well the experimentally measured data for nanofluids with 38, 25 and 13 nm alumina particles, when the solid-like boundary phase is assumed to possess ice-like thermal conductivity (2 W/mK) and a thickness of 1-5 nm. For nanocrystalline alumina (assuming a grain boundary with thickness 1 nm and a glass-like conductivity value of 1.1 W/mK), it is shown that significant grain size effects cannot be expected for grain sizes above 100 nm and a more than 10 % conductivity reduction requires grain s
Název v anglickém jazyce
Phase Mixture Models for the Thermal Conductivity of Nanofluids and Nanocrystalline Solids
Popis výsledku anglicky
Nanofluids exhibit enhanced thermal conductivity with decreasing particle size, while nanocrystalline solids show a thermal conductivity reduction with decreasing grain size. Both phenomena can be modeled as being due to a boundary phase acting as a thermal bridge or barrier, respectively. In this paper a new phase mixture model is presented, based on a ?mixed average? of the upper and lower Wiener bounds. It is shown that in the case of alumina-water nanofluids our model is able to describe very well the experimentally measured data for nanofluids with 38, 25 and 13 nm alumina particles, when the solid-like boundary phase is assumed to possess ice-like thermal conductivity (2 W/mK) and a thickness of 1-5 nm. For nanocrystalline alumina (assuming a grain boundary with thickness 1 nm and a glass-like conductivity value of 1.1 W/mK), it is shown that significant grain size effects cannot be expected for grain sizes above 100 nm and a more than 10 % conductivity reduction requires grain s
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
JH - Keramika, žáruvzdorné materiály a skla
OECD FORD obor
—
Návaznosti výsledku
Projekt
<a href="/cs/project/IAA401250703" target="_blank" >IAA401250703: PORÉZNÍ KERAMIKA, KERAMICKÉ KOMPOZITY A NANOKERAMIKA</a><br>
Návaznosti
Z - Vyzkumny zamer (s odkazem do CEZ)
Ostatní
Rok uplatnění
2009
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
AIP Conference Proceedings
ISSN
0094-243X
e-ISSN
—
Svazek periodika
—
Číslo periodika v rámci svazku
1145
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
4
Strana od-do
—
Kód UT WoS článku
000270602900020
EID výsledku v databázi Scopus
—