Non-stoichiometric phases – composition, properties and phase transitions
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60461373%3A22310%2F18%3A43915527" target="_blank" >RIV/60461373:22310/18:43915527 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/60461373:22810/18:43915527
Výsledek na webu
<a href="https://link.springer.com/content/pdf/10.1007%2F978-3-319-45899-1_8.pdf" target="_blank" >https://link.springer.com/content/pdf/10.1007%2F978-3-319-45899-1_8.pdf</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-319-45899-1_8" target="_blank" >10.1007/978-3-319-45899-1_8</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Non-stoichiometric phases – composition, properties and phase transitions
Popis výsledku v původním jazyce
Nonstoichiometric phases constitute a large family of technologically important materials. Among them, the inorganic materials whose variable stoichiometry of some components originates from their exchange with surrounding atmosphere represent particular thermodynamic systems referred to a partly open system. The phase equilibria in these systems including the homogeneous crystallochemical reactions of the involved crystal defects can be effectively treated using the thermodynamic potential called hyper-free energy derived from the Gibbs free energy by Legendre transformation with respect to the amounts of free components. In this chapter, we focus on general thermodynamic description of systems with variable content of components shared with a dynamical atmosphere, their essential material quantities being influenced by variable stoichiometry, conditions for homogeneous crystallochemical equilibria as well as for phase transitions. The influence of variable stoichiometry on material properties such as isobaric thermal expansion, isothermal compressibility and in particular heat capacity is analyzed and divided into two parts: the direct effect on conventional isoplethal quantities due to deviation from stoichiometry, and so-called saturation contributions determining the difference in material properties measured under isoplethal and isodynamical conditions (constant activities of free components). In the last part, the construction of phase diagrams of partly open systems is demonstrated on several examples of oxide systems, and the relevant phase transitions are classified and discussed.
Název v anglickém jazyce
Non-stoichiometric phases – composition, properties and phase transitions
Popis výsledku anglicky
Nonstoichiometric phases constitute a large family of technologically important materials. Among them, the inorganic materials whose variable stoichiometry of some components originates from their exchange with surrounding atmosphere represent particular thermodynamic systems referred to a partly open system. The phase equilibria in these systems including the homogeneous crystallochemical reactions of the involved crystal defects can be effectively treated using the thermodynamic potential called hyper-free energy derived from the Gibbs free energy by Legendre transformation with respect to the amounts of free components. In this chapter, we focus on general thermodynamic description of systems with variable content of components shared with a dynamical atmosphere, their essential material quantities being influenced by variable stoichiometry, conditions for homogeneous crystallochemical equilibria as well as for phase transitions. The influence of variable stoichiometry on material properties such as isobaric thermal expansion, isothermal compressibility and in particular heat capacity is analyzed and divided into two parts: the direct effect on conventional isoplethal quantities due to deviation from stoichiometry, and so-called saturation contributions determining the difference in material properties measured under isoplethal and isodynamical conditions (constant activities of free components). In the last part, the construction of phase diagrams of partly open systems is demonstrated on several examples of oxide systems, and the relevant phase transitions are classified and discussed.
Klasifikace
Druh
C - Kapitola v odborné knize
CEP obor
—
OECD FORD obor
10403 - Physical chemistry
Návaznosti výsledku
Projekt
—
Návaznosti
N - Vyzkumna aktivita podporovana z neverejnych zdroju
Ostatní
Rok uplatnění
2018
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název knihy nebo sborníku
Thermal Physics and Thermal Analysis: From Micro to Macro
ISBN
978-3-319-45899-1
Počet stran výsledku
18
Strana od-do
177-194
Počet stran knihy
585
Název nakladatele
Springer International Publishing Switzerland
Místo vydání
Cham
Kód UT WoS kapitoly
—