A general predictive model for sweeping gas membrane distillation
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60461373%3A22310%2F18%3A43915949" target="_blank" >RIV/60461373:22310/18:43915949 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.sciencedirect.com/science/article/pii/S0011916418302406?via%3Dihub" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0011916418302406?via%3Dihub</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.desal.2018.06.007" target="_blank" >10.1016/j.desal.2018.06.007</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
A general predictive model for sweeping gas membrane distillation
Popis výsledku v původním jazyce
Among the configurations of membrane distillation processes, sweeping gas membrane distillation (SGMD) remains one of the less studied. In spite of an increasing number of publications, generally the modeling of SGMD has been carried out by fitting heat and mass transfer coefficients and with the use of empirical correlations. In this work, a general predictive model based on computational fluid dynamics (CFD) is presented. This model allows simulating hollow fiber and flat sheet configurations under wide range of process conditions; with a minimum number of input data and without requiring empirical parameters or laboratory experiments. For this purpose, the momentum, mass and heat balances of the process are described by partial differential equations, algebraic and ordinary differential equations. The model has been validated with experimental results available in the literature. Indeed, the influence of operating conditions and membrane geometric characteristics on the process performance was investigated. The conducted studies prove that the proposed model would be potentially applied for the optimization of process conditions, design of membrane modules as well as for the further cost estimation of the process. © 2018 Elsevier B.V.
Název v anglickém jazyce
A general predictive model for sweeping gas membrane distillation
Popis výsledku anglicky
Among the configurations of membrane distillation processes, sweeping gas membrane distillation (SGMD) remains one of the less studied. In spite of an increasing number of publications, generally the modeling of SGMD has been carried out by fitting heat and mass transfer coefficients and with the use of empirical correlations. In this work, a general predictive model based on computational fluid dynamics (CFD) is presented. This model allows simulating hollow fiber and flat sheet configurations under wide range of process conditions; with a minimum number of input data and without requiring empirical parameters or laboratory experiments. For this purpose, the momentum, mass and heat balances of the process are described by partial differential equations, algebraic and ordinary differential equations. The model has been validated with experimental results available in the literature. Indeed, the influence of operating conditions and membrane geometric characteristics on the process performance was investigated. The conducted studies prove that the proposed model would be potentially applied for the optimization of process conditions, design of membrane modules as well as for the further cost estimation of the process. © 2018 Elsevier B.V.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20402 - Chemical process engineering
Návaznosti výsledku
Projekt
<a href="/cs/project/LO1613" target="_blank" >LO1613: Výzkum nových materiálů pro chemický průmysl</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2018
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Desalination
ISSN
0011-9164
e-ISSN
—
Svazek periodika
443
Číslo periodika v rámci svazku
OCT 1 2018
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
22
Strana od-do
285-306
Kód UT WoS článku
000442333000027
EID výsledku v databázi Scopus
2-s2.0-85049480967