Enhancing PEM water electrolysis efficiency by reducing the extent of Ti gas diffusion layer passivation
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60461373%3A22310%2F18%3A43916423" target="_blank" >RIV/60461373:22310/18:43916423 - isvavai.cz</a>
Výsledek na webu
<a href="https://link.springer.com/article/10.1007%2Fs10800-018-1174-6" target="_blank" >https://link.springer.com/article/10.1007%2Fs10800-018-1174-6</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s10800-018-1174-6" target="_blank" >10.1007/s10800-018-1174-6</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Enhancing PEM water electrolysis efficiency by reducing the extent of Ti gas diffusion layer passivation
Popis výsledku v původním jazyce
Proton exchange membrane water electrolysis (PEM WE) suffers from several issues, such as the high cost and low stability of the electrolyser unit components. This is especially evident for an anode polarised to a high potential and in contact with an acidic membrane. Such a combination is detrimental to the vast majority of electron-conducting materials. Nowadays Ti (possessing a protective passive layer on its surface) is used as the construction material of an anode gas diffusion layer. Since the passivation layer itself is non-/semiconducting, an excessive degree of passivation leads to high surface contact resistance and to energy losses during PEM WE operation. This problem is usually solved by coating the Ti surface with precious metals. This leads to a further increase of the already very high cell investment costs. In this work an alternative method based on appropriate Ti etching (in acid) is presented. The (surface) composition of the samples treated was investigated using SEM, X-ray fluorescence and diffraction and photoelectron spectroscopy. TiHx was found in the subsurface layer. This was responsible for preventing excessive passivation of the Ti metal. The superior performance of the etched Ti gas diffusion layer (compared to non-etched) in a PEM water electrolyser was confirmed during an (> 100 h) experiment with current densities of up to 1 A cm(- 2). Using the described treatment the surface contact resistance was substantially reduced and its increase during PEM WE operation was largely suppressed. As this method is very simple and cheap, it has tremendous potential for improving PEM WE process efficiency. [GRAPHICS] .
Název v anglickém jazyce
Enhancing PEM water electrolysis efficiency by reducing the extent of Ti gas diffusion layer passivation
Popis výsledku anglicky
Proton exchange membrane water electrolysis (PEM WE) suffers from several issues, such as the high cost and low stability of the electrolyser unit components. This is especially evident for an anode polarised to a high potential and in contact with an acidic membrane. Such a combination is detrimental to the vast majority of electron-conducting materials. Nowadays Ti (possessing a protective passive layer on its surface) is used as the construction material of an anode gas diffusion layer. Since the passivation layer itself is non-/semiconducting, an excessive degree of passivation leads to high surface contact resistance and to energy losses during PEM WE operation. This problem is usually solved by coating the Ti surface with precious metals. This leads to a further increase of the already very high cell investment costs. In this work an alternative method based on appropriate Ti etching (in acid) is presented. The (surface) composition of the samples treated was investigated using SEM, X-ray fluorescence and diffraction and photoelectron spectroscopy. TiHx was found in the subsurface layer. This was responsible for preventing excessive passivation of the Ti metal. The superior performance of the etched Ti gas diffusion layer (compared to non-etched) in a PEM water electrolyser was confirmed during an (> 100 h) experiment with current densities of up to 1 A cm(- 2). Using the described treatment the surface contact resistance was substantially reduced and its increase during PEM WE operation was largely suppressed. As this method is very simple and cheap, it has tremendous potential for improving PEM WE process efficiency. [GRAPHICS] .
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10405 - Electrochemistry (dry cells, batteries, fuel cells, corrosion metals, electrolysis)
Návaznosti výsledku
Projekt
<a href="/cs/project/LO1613" target="_blank" >LO1613: Výzkum nových materiálů pro chemický průmysl</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2018
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Journal of Applied Electrochemistry
ISSN
0021-891X
e-ISSN
—
Svazek periodika
48
Číslo periodika v rámci svazku
6
Stát vydavatele periodika
DE - Spolková republika Německo
Počet stran výsledku
11
Strana od-do
713-723
Kód UT WoS článku
000432525500015
EID výsledku v databázi Scopus
2-s2.0-85043392102