Young's modulus and thermal conductivity of model materials with convex or concave pores - from analytical predictions to numerical results
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60461373%3A22310%2F18%3A43916700" target="_blank" >RIV/60461373:22310/18:43916700 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.sciencedirect.com/science/article/pii/S0955221918300682" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0955221918300682</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.jeurceramsoc.2018.01.040" target="_blank" >10.1016/j.jeurceramsoc.2018.01.040</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Young's modulus and thermal conductivity of model materials with convex or concave pores - from analytical predictions to numerical results
Popis výsledku v původním jazyce
The effective Young's modulus and thermal conductivity of porous materials can be rigorously bounded from above via micromechanical bounds (upper Wiener Paul bounds and upper Hashin Shtrikman bounds), and several model relations are commonly used as tentative approximate predictions (Maxwell-type, Coble-Kingery-type, power-law and exponential relations). Based on numerical calculations on computer-generated digital model microstructures, both periodic and random, it is shown that these model relations provide rough approximations that are more or less appropriate for microstructures with essentially convex pores, but are not suitable for microstructures with concave pores. On the other hand, the Pabst Gregorova cross-property relation provides a very accurate (better than 0.04 relative property units) analytical prediction for the relative Young's modulus of isotropic porous materials with isometric pores, both convex and concave, when the relative thermal conductivity is known. It is shown that this cross-property relation is the best prediction currently available for isotropic porous materials with isometric pores.
Název v anglickém jazyce
Young's modulus and thermal conductivity of model materials with convex or concave pores - from analytical predictions to numerical results
Popis výsledku anglicky
The effective Young's modulus and thermal conductivity of porous materials can be rigorously bounded from above via micromechanical bounds (upper Wiener Paul bounds and upper Hashin Shtrikman bounds), and several model relations are commonly used as tentative approximate predictions (Maxwell-type, Coble-Kingery-type, power-law and exponential relations). Based on numerical calculations on computer-generated digital model microstructures, both periodic and random, it is shown that these model relations provide rough approximations that are more or less appropriate for microstructures with essentially convex pores, but are not suitable for microstructures with concave pores. On the other hand, the Pabst Gregorova cross-property relation provides a very accurate (better than 0.04 relative property units) analytical prediction for the relative Young's modulus of isotropic porous materials with isometric pores, both convex and concave, when the relative thermal conductivity is known. It is shown that this cross-property relation is the best prediction currently available for isotropic porous materials with isometric pores.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20504 - Ceramics
Návaznosti výsledku
Projekt
<a href="/cs/project/GA15-18513S" target="_blank" >GA15-18513S: Příprava a charakterizace oxidové a silikátové keramiky s řízenou mikrostrukturou a modelování souvislostí mezi mikrostrukturou a vlastnostmi</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2018
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Journal of the European Ceramic Society
ISSN
0955-2219
e-ISSN
—
Svazek periodika
38
Číslo periodika v rámci svazku
7
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
14
Strana od-do
2694-2707
Kód UT WoS článku
000430647800003
EID výsledku v databázi Scopus
2-s2.0-85041607958