Origin of glass fragility and Vogel temperature emerging from Molecular dynamics simulations
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60461373%3A22310%2F18%3A43917257" target="_blank" >RIV/60461373:22310/18:43917257 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1016/j.jnoncrysol.2018.06.012" target="_blank" >http://dx.doi.org/10.1016/j.jnoncrysol.2018.06.012</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.jnoncrysol.2018.06.012" target="_blank" >10.1016/j.jnoncrysol.2018.06.012</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Origin of glass fragility and Vogel temperature emerging from Molecular dynamics simulations
Popis výsledku v původním jazyce
Vitreous silica is modelled by Molecular dynamics. Glass structure is transferred into undirected graph and decomposed into disjoint structural units that are ideally mixed to calculate configuration entropy. A good agreement of the approach with experimental heat capacity drop at T-g is demonstrated. Entropy is related with structural evolution of the obtained units; among them dangling oxygen dominantly effects low-temperature course of entropy. Configuration entropy is fitted by two parabolas; the one, corresponding to lower temperatures, introduces temperature T*, at which structure is completely frozen. It is proposed T* is a counterpart of Vogel temperature in Vogel-Fulcher-Tammann (VFT) equation. A new model of viscosity is introduced as the combination of the quadratic dependence of configuration entropy and Adam and Gibbs equation. The model removes the singularity at Vogel temperature, predicts existence of strong and fragile glasses, and provides a base for fitting viscosities of real glasses. Fragility is associated with quickness of structural response to temperature changes and the distance between T-g and T*. The validity of the model is demonstrated on experimental data of viscosity for SiO2 and B2O3 glasses.
Název v anglickém jazyce
Origin of glass fragility and Vogel temperature emerging from Molecular dynamics simulations
Popis výsledku anglicky
Vitreous silica is modelled by Molecular dynamics. Glass structure is transferred into undirected graph and decomposed into disjoint structural units that are ideally mixed to calculate configuration entropy. A good agreement of the approach with experimental heat capacity drop at T-g is demonstrated. Entropy is related with structural evolution of the obtained units; among them dangling oxygen dominantly effects low-temperature course of entropy. Configuration entropy is fitted by two parabolas; the one, corresponding to lower temperatures, introduces temperature T*, at which structure is completely frozen. It is proposed T* is a counterpart of Vogel temperature in Vogel-Fulcher-Tammann (VFT) equation. A new model of viscosity is introduced as the combination of the quadratic dependence of configuration entropy and Adam and Gibbs equation. The model removes the singularity at Vogel temperature, predicts existence of strong and fragile glasses, and provides a base for fitting viscosities of real glasses. Fragility is associated with quickness of structural response to temperature changes and the distance between T-g and T*. The validity of the model is demonstrated on experimental data of viscosity for SiO2 and B2O3 glasses.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20504 - Ceramics
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2018
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Journal of Non-crystalline Solids
ISSN
0022-3093
e-ISSN
—
Svazek periodika
498
Číslo periodika v rámci svazku
říjen
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
9
Strana od-do
109-117
Kód UT WoS článku
000440389500015
EID výsledku v databázi Scopus
—