Atomic Layer Deposition as a General Method Turns any 3D-Printed Electrode into a Desired Catalyst: Case Study in Photoelectrochemisty
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60461373%3A22310%2F19%3A43918005" target="_blank" >RIV/60461373:22310/19:43918005 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/00216305:26620/19:PU133193
Výsledek na webu
<a href="https://onlinelibrary.wiley.com/doi/abs/10.1002/aenm.201900994" target="_blank" >https://onlinelibrary.wiley.com/doi/abs/10.1002/aenm.201900994</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1002/aenm.201900994" target="_blank" >10.1002/aenm.201900994</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Atomic Layer Deposition as a General Method Turns any 3D-Printed Electrode into a Desired Catalyst: Case Study in Photoelectrochemisty
Popis výsledku v původním jazyce
3D-printing technologies have begun to revolutionize many manufacturing processes, however, there are still significant limitations that are yet to be overcome. In particular, the material from which the products are fabricated is limited by the 3D-printing material precursor. Particularly, for photoelectrochemical (PEC) energy applications, the as-printed electrodes can be used as is, or modified by postfabrication processes, e.g., electrochemical deposition or anodization, to create active layers on the 3D-printed electrodes. However, the as-printed electrodes are relatively inert for various PEC energy applications, and the aforementioned postfabrication processing techniques do not offer layer conformity or control at the angstrom ngstrom/nano level. Herein, for the first time, atomic layer deposition (ALD) is utilized in conjunction with metal 3D-printing to create active electrodes. To illustrate the proof-of-concept, TiO2 is deposited by ALD onto stainless steel 3D-printed electrodes and subsequently investigated as a photoanode for PEC water oxidation. Furthermore, by tuning the TiO2 thickness by ALD, the activity can be optimized. By combining 3D-printing and ALD, instead of other metal deposition techniques, i.e., sputtering, rapid prototyping of electrodes with controllable thickness of the desired material onto an as-printed electrodes with any porosity can be achieved that can benefit a multitude of energy applications.
Název v anglickém jazyce
Atomic Layer Deposition as a General Method Turns any 3D-Printed Electrode into a Desired Catalyst: Case Study in Photoelectrochemisty
Popis výsledku anglicky
3D-printing technologies have begun to revolutionize many manufacturing processes, however, there are still significant limitations that are yet to be overcome. In particular, the material from which the products are fabricated is limited by the 3D-printing material precursor. Particularly, for photoelectrochemical (PEC) energy applications, the as-printed electrodes can be used as is, or modified by postfabrication processes, e.g., electrochemical deposition or anodization, to create active layers on the 3D-printed electrodes. However, the as-printed electrodes are relatively inert for various PEC energy applications, and the aforementioned postfabrication processing techniques do not offer layer conformity or control at the angstrom ngstrom/nano level. Herein, for the first time, atomic layer deposition (ALD) is utilized in conjunction with metal 3D-printing to create active electrodes. To illustrate the proof-of-concept, TiO2 is deposited by ALD onto stainless steel 3D-printed electrodes and subsequently investigated as a photoanode for PEC water oxidation. Furthermore, by tuning the TiO2 thickness by ALD, the activity can be optimized. By combining 3D-printing and ALD, instead of other metal deposition techniques, i.e., sputtering, rapid prototyping of electrodes with controllable thickness of the desired material onto an as-printed electrodes with any porosity can be achieved that can benefit a multitude of energy applications.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10402 - Inorganic and nuclear chemistry
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2019
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
ADVANCED ENERGY MATERIALS
ISSN
1614-6832
e-ISSN
—
Svazek periodika
9
Číslo periodika v rámci svazku
26
Stát vydavatele periodika
DE - Spolková republika Německo
Počet stran výsledku
10
Strana od-do
—
Kód UT WoS článku
000477779200010
EID výsledku v databázi Scopus
2-s2.0-85065724485