Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Atomic Layer Deposition as a General Method Turns any 3D-Printed Electrode into a Desired Catalyst: Case Study in Photoelectrochemisty

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60461373%3A22310%2F19%3A43918005" target="_blank" >RIV/60461373:22310/19:43918005 - isvavai.cz</a>

  • Nalezeny alternativní kódy

    RIV/00216305:26620/19:PU133193

  • Výsledek na webu

    <a href="https://onlinelibrary.wiley.com/doi/abs/10.1002/aenm.201900994" target="_blank" >https://onlinelibrary.wiley.com/doi/abs/10.1002/aenm.201900994</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1002/aenm.201900994" target="_blank" >10.1002/aenm.201900994</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Atomic Layer Deposition as a General Method Turns any 3D-Printed Electrode into a Desired Catalyst: Case Study in Photoelectrochemisty

  • Popis výsledku v původním jazyce

    3D-printing technologies have begun to revolutionize many manufacturing processes, however, there are still significant limitations that are yet to be overcome. In particular, the material from which the products are fabricated is limited by the 3D-printing material precursor. Particularly, for photoelectrochemical (PEC) energy applications, the as-printed electrodes can be used as is, or modified by postfabrication processes, e.g., electrochemical deposition or anodization, to create active layers on the 3D-printed electrodes. However, the as-printed electrodes are relatively inert for various PEC energy applications, and the aforementioned postfabrication processing techniques do not offer layer conformity or control at the angstrom ngstrom/nano level. Herein, for the first time, atomic layer deposition (ALD) is utilized in conjunction with metal 3D-printing to create active electrodes. To illustrate the proof-of-concept, TiO2 is deposited by ALD onto stainless steel 3D-printed electrodes and subsequently investigated as a photoanode for PEC water oxidation. Furthermore, by tuning the TiO2 thickness by ALD, the activity can be optimized. By combining 3D-printing and ALD, instead of other metal deposition techniques, i.e., sputtering, rapid prototyping of electrodes with controllable thickness of the desired material onto an as-printed electrodes with any porosity can be achieved that can benefit a multitude of energy applications.

  • Název v anglickém jazyce

    Atomic Layer Deposition as a General Method Turns any 3D-Printed Electrode into a Desired Catalyst: Case Study in Photoelectrochemisty

  • Popis výsledku anglicky

    3D-printing technologies have begun to revolutionize many manufacturing processes, however, there are still significant limitations that are yet to be overcome. In particular, the material from which the products are fabricated is limited by the 3D-printing material precursor. Particularly, for photoelectrochemical (PEC) energy applications, the as-printed electrodes can be used as is, or modified by postfabrication processes, e.g., electrochemical deposition or anodization, to create active layers on the 3D-printed electrodes. However, the as-printed electrodes are relatively inert for various PEC energy applications, and the aforementioned postfabrication processing techniques do not offer layer conformity or control at the angstrom ngstrom/nano level. Herein, for the first time, atomic layer deposition (ALD) is utilized in conjunction with metal 3D-printing to create active electrodes. To illustrate the proof-of-concept, TiO2 is deposited by ALD onto stainless steel 3D-printed electrodes and subsequently investigated as a photoanode for PEC water oxidation. Furthermore, by tuning the TiO2 thickness by ALD, the activity can be optimized. By combining 3D-printing and ALD, instead of other metal deposition techniques, i.e., sputtering, rapid prototyping of electrodes with controllable thickness of the desired material onto an as-printed electrodes with any porosity can be achieved that can benefit a multitude of energy applications.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10402 - Inorganic and nuclear chemistry

Návaznosti výsledku

  • Projekt

    Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2019

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    ADVANCED ENERGY MATERIALS

  • ISSN

    1614-6832

  • e-ISSN

  • Svazek periodika

    9

  • Číslo periodika v rámci svazku

    26

  • Stát vydavatele periodika

    DE - Spolková republika Německo

  • Počet stran výsledku

    10

  • Strana od-do

  • Kód UT WoS článku

    000477779200010

  • EID výsledku v databázi Scopus

    2-s2.0-85065724485