Influence of Wood-Based Biomass Ash Admixing on the Structural, Mechanical, Hygric, and Thermal Properties of Air Lime Mortars
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60461373%3A22310%2F19%3A43918264" target="_blank" >RIV/60461373:22310/19:43918264 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/68407700:21110/19:00332135
Výsledek na webu
<a href="https://www.mdpi.com/1996-1944/12/14/2227" target="_blank" >https://www.mdpi.com/1996-1944/12/14/2227</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.3390/ma12142227" target="_blank" >10.3390/ma12142227</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Influence of Wood-Based Biomass Ash Admixing on the Structural, Mechanical, Hygric, and Thermal Properties of Air Lime Mortars
Popis výsledku v původním jazyce
Mechanically-activated wood-based biomass ash (WBA) was studied as a potential active admixture for design of a novel lime-pozzolan-based mortar for renovation purposes. The replacement ratio of lime hydrate in a mortar mix composition was 5%, 10%, and 15% by mass. The water/binder ratio and the sand/binder ratio were kept constant for all examined mortar mixes. Both binder constituents were characterized by their powder density, specific density, BET (Brunauer Emmett Teller), and Blaine specific surfaces. Their chemical composition was measured by X-ray fluorescence analysis (XRF) and mineralogical analysis was performed using X-ray diffraction (XRD). Morphology of WBA was investigated by scanning electron microscopy (SEM) and element mapping was performed using an energy dispersive spectroscopy (EDS) analyzer. The pozzolanic activity of WBA was tested by the Chapelle test and assessment of the Portlandite content used simultaneous thermal analysis (STA). For the hardened mortar samples, a complete set of structural, mechanical, hygric, and thermal parameters was experimentally determined. The mortars with WBA admixing yielded similar or better functional properties than those obtained for traditional pure lime-based plaster, pointing to their presumed application as rendering and walling renovation mortars. As the Chapelle test, STA, and mechanical test proved high pozzolanity of WBA, it was classified as an alternative eco-efficient low-cost pozzolan for use in lime blend-based building materials. The savings in CO2 emissions and energy by the use of WBA as a partial lime hydrate substitute in mortar composition were also highly appreciated with respect to the sustainability of the construction industry.
Název v anglickém jazyce
Influence of Wood-Based Biomass Ash Admixing on the Structural, Mechanical, Hygric, and Thermal Properties of Air Lime Mortars
Popis výsledku anglicky
Mechanically-activated wood-based biomass ash (WBA) was studied as a potential active admixture for design of a novel lime-pozzolan-based mortar for renovation purposes. The replacement ratio of lime hydrate in a mortar mix composition was 5%, 10%, and 15% by mass. The water/binder ratio and the sand/binder ratio were kept constant for all examined mortar mixes. Both binder constituents were characterized by their powder density, specific density, BET (Brunauer Emmett Teller), and Blaine specific surfaces. Their chemical composition was measured by X-ray fluorescence analysis (XRF) and mineralogical analysis was performed using X-ray diffraction (XRD). Morphology of WBA was investigated by scanning electron microscopy (SEM) and element mapping was performed using an energy dispersive spectroscopy (EDS) analyzer. The pozzolanic activity of WBA was tested by the Chapelle test and assessment of the Portlandite content used simultaneous thermal analysis (STA). For the hardened mortar samples, a complete set of structural, mechanical, hygric, and thermal parameters was experimentally determined. The mortars with WBA admixing yielded similar or better functional properties than those obtained for traditional pure lime-based plaster, pointing to their presumed application as rendering and walling renovation mortars. As the Chapelle test, STA, and mechanical test proved high pozzolanity of WBA, it was classified as an alternative eco-efficient low-cost pozzolan for use in lime blend-based building materials. The savings in CO2 emissions and energy by the use of WBA as a partial lime hydrate substitute in mortar composition were also highly appreciated with respect to the sustainability of the construction industry.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10402 - Inorganic and nuclear chemistry
Návaznosti výsledku
Projekt
<a href="/cs/project/GA18-07332S" target="_blank" >GA18-07332S: Vlastnosti, trvanlivost a chování lehkých maltových směsí s minerálními plnivy</a><br>
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2019
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Materials
ISSN
1996-1944
e-ISSN
—
Svazek periodika
12
Číslo periodika v rámci svazku
14
Stát vydavatele periodika
CH - Švýcarská konfederace
Počet stran výsledku
22
Strana od-do
—
Kód UT WoS článku
000480454300015
EID výsledku v databázi Scopus
2-s2.0-85070475430