Thermodynamic Modeling of Oxidation of Tin Nanoparticles
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60461373%3A22310%2F19%3A43918274" target="_blank" >RIV/60461373:22310/19:43918274 - isvavai.cz</a>
Výsledek na webu
<a href="https://link.springer.com/article/10.1007/s11669-018-0686-4" target="_blank" >https://link.springer.com/article/10.1007/s11669-018-0686-4</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s11669-018-0686-4" target="_blank" >10.1007/s11669-018-0686-4</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Thermodynamic Modeling of Oxidation of Tin Nanoparticles
Popis výsledku v původním jazyce
A thorough thermodynamic analysis of oxidation of tin nanoparticles was performed. Solid tin oxides SnO2, Sn3O4 and SnO were considered according to the bulk phase diagram and a number of experimental results on tin nanostructures oxidation were taken into account in the assessment. Two equilibrium models with different spatial configuration, namely two single-component particles and core–shell model were explored. The surface energies for solid SnO and Sn3O4 were obtained on the basis of DFT calculations while the interfacial energies at SnO2(s)/Sn(l) and Sn3O4(s)/Sn(l) interfaces were assessed using a broken bond approximation. The opposite influence of nanosizing on stability of SnO2 and SnO/Sn3O4 oxides is demonstrated. It is due to the surface contribution which is higher for SnO2(s) than Sn(l) while lower for SnO(s) and Sn3O4(s) compared to Sn(l). This situation can explain some experimental findings during oxidation of Sn nanoparticles, namely an increased stability of SnO(s) and Sn3O4(s) with respect to both liquid tin and solid tin dioxide. © 2018, ASM International.
Název v anglickém jazyce
Thermodynamic Modeling of Oxidation of Tin Nanoparticles
Popis výsledku anglicky
A thorough thermodynamic analysis of oxidation of tin nanoparticles was performed. Solid tin oxides SnO2, Sn3O4 and SnO were considered according to the bulk phase diagram and a number of experimental results on tin nanostructures oxidation were taken into account in the assessment. Two equilibrium models with different spatial configuration, namely two single-component particles and core–shell model were explored. The surface energies for solid SnO and Sn3O4 were obtained on the basis of DFT calculations while the interfacial energies at SnO2(s)/Sn(l) and Sn3O4(s)/Sn(l) interfaces were assessed using a broken bond approximation. The opposite influence of nanosizing on stability of SnO2 and SnO/Sn3O4 oxides is demonstrated. It is due to the surface contribution which is higher for SnO2(s) than Sn(l) while lower for SnO(s) and Sn3O4(s) compared to Sn(l). This situation can explain some experimental findings during oxidation of Sn nanoparticles, namely an increased stability of SnO(s) and Sn3O4(s) with respect to both liquid tin and solid tin dioxide. © 2018, ASM International.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10402 - Inorganic and nuclear chemistry
Návaznosti výsledku
Projekt
<a href="/cs/project/GA17-13161S" target="_blank" >GA17-13161S: Vliv nestechiometrie a nanostrukturování na materiálové vlastnosti oxidů kovů</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2019
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Journal of Phase Equilibria and Diffusion
ISSN
1547-7037
e-ISSN
—
Svazek periodika
40
Číslo periodika v rámci svazku
1
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
11
Strana od-do
10-20
Kód UT WoS článku
000458154000003
EID výsledku v databázi Scopus
2-s2.0-85055720577