Degradation kinetics of Pt during high-temperature PEM fuel cell operation part I: Kinetics of Pt surface oxidation and dissolution in concentrated H3PO4 electrolyte at elevated temperatures
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60461373%3A22310%2F19%3A43918382" target="_blank" >RIV/60461373:22310/19:43918382 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.sciencedirect.com/science/article/pii/S0013468619308321?via%3Dihub" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0013468619308321?via%3Dihub</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.electacta.2019.04.144" target="_blank" >10.1016/j.electacta.2019.04.144</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Degradation kinetics of Pt during high-temperature PEM fuel cell operation part I: Kinetics of Pt surface oxidation and dissolution in concentrated H3PO4 electrolyte at elevated temperatures
Popis výsledku v původním jazyce
In this work, a combined approach, utilising both experimental cyclic voltammetry and mathematical modelling, was adopted in order to determine the kinetics of Pt oxidation to PtO and chemical dissolution of PtO to Pt2+ in concentrated H3PO4 at elevated temperatures. Experimental cyclic voltammograms were corrected for chemical dissolution of PtO based on a charge balance calculation and the corresponding kinetic constant was evaluated. The corrected voltammograms were compared with the results of a 0-dimensional dynamic model of electrochemical Pt oxidation and the kinetic parameters of this reaction were evaluated. Finally, the two surface reactions were integrated into a mathematical model. This model is able to simulate cyclic voltammograms of Pt in concentrated H3PO4 electrolyte within the temperature range of 120-160 degrees C. It was shown that Pt electrochemical oxidation is the dominating reaction on the Pt surface, based on total recorded charge. However, the chemical dissolution of PtO is by no means negligible, since as much as 10% of the PtO monolayer formed can chemically dissolve under specific conditions. (C) 2019 Elsevier Ltd. All rights reserved.
Název v anglickém jazyce
Degradation kinetics of Pt during high-temperature PEM fuel cell operation part I: Kinetics of Pt surface oxidation and dissolution in concentrated H3PO4 electrolyte at elevated temperatures
Popis výsledku anglicky
In this work, a combined approach, utilising both experimental cyclic voltammetry and mathematical modelling, was adopted in order to determine the kinetics of Pt oxidation to PtO and chemical dissolution of PtO to Pt2+ in concentrated H3PO4 at elevated temperatures. Experimental cyclic voltammograms were corrected for chemical dissolution of PtO based on a charge balance calculation and the corresponding kinetic constant was evaluated. The corrected voltammograms were compared with the results of a 0-dimensional dynamic model of electrochemical Pt oxidation and the kinetic parameters of this reaction were evaluated. Finally, the two surface reactions were integrated into a mathematical model. This model is able to simulate cyclic voltammograms of Pt in concentrated H3PO4 electrolyte within the temperature range of 120-160 degrees C. It was shown that Pt electrochemical oxidation is the dominating reaction on the Pt surface, based on total recorded charge. However, the chemical dissolution of PtO is by no means negligible, since as much as 10% of the PtO monolayer formed can chemically dissolve under specific conditions. (C) 2019 Elsevier Ltd. All rights reserved.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10405 - Electrochemistry (dry cells, batteries, fuel cells, corrosion metals, electrolysis)
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2019
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Electrochimica Acta
ISSN
0013-4686
e-ISSN
—
Svazek periodika
313
Číslo periodika v rámci svazku
August
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
15
Strana od-do
352-366
Kód UT WoS článku
000470236500038
EID výsledku v databázi Scopus
2-s2.0-85066063956