Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Progress in development of alkaline water electrolysis stack based on “zero-gap” approach.

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60461373%3A22310%2F19%3A43918441" target="_blank" >RIV/60461373:22310/19:43918441 - isvavai.cz</a>

  • Výsledek na webu

  • DOI - Digital Object Identifier

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Progress in development of alkaline water electrolysis stack based on “zero-gap” approach.

  • Popis výsledku v původním jazyce

    Traditional approach to design of the industrial scale alkaline water electrolysis cells and stacks is based on utilization of porous separators of the anode and cathode compartments. Main role of the separator is to prevent mixing of the produced gases and thus to (i) avoid formation of explosive mixture of hydrogen and oxygen and (ii) minimize faradayic efficiency losses. Utilisation of this type of separator has severe impact on the design of the cell and corresponding operational conditions. This concerns mainly significant distance between electrodes and separator, utilization of the concentrated KOH as an electrolyte solution and necessity to keep equal pressure in both electrode compartments. Within the last years significant advancement was reached in development of the new anion selective polymer electrolytes. The modern materials show nowadays satisfactory performance under certain conditions, especially at operational temperature lower than 50 °C. Novel polymer electrolytes partly reported during previous EMEA meetings also allow to fix efficiently catalytic layer not only on top of the electrode surface (CCE), but also directly on the surface of the membrane (CCM). Utilizing membranes based on these polymers allows designing electrolysis cell based on the so-called zero gap approach, i.e. with the electrodes attached directly to the membrane surface. Present contribution reports on development of two generations of the laboratory scale alkaline water electrolysis stack together with its selected components. Strategies for operating the stack in mode with zero pressure gradient on the membrane are discussed as well. The experimental study was accompanied by mathematical modelling on different levels of complexity representing solid background for the future stack scaling up.

  • Název v anglickém jazyce

    Progress in development of alkaline water electrolysis stack based on “zero-gap” approach.

  • Popis výsledku anglicky

    Traditional approach to design of the industrial scale alkaline water electrolysis cells and stacks is based on utilization of porous separators of the anode and cathode compartments. Main role of the separator is to prevent mixing of the produced gases and thus to (i) avoid formation of explosive mixture of hydrogen and oxygen and (ii) minimize faradayic efficiency losses. Utilisation of this type of separator has severe impact on the design of the cell and corresponding operational conditions. This concerns mainly significant distance between electrodes and separator, utilization of the concentrated KOH as an electrolyte solution and necessity to keep equal pressure in both electrode compartments. Within the last years significant advancement was reached in development of the new anion selective polymer electrolytes. The modern materials show nowadays satisfactory performance under certain conditions, especially at operational temperature lower than 50 °C. Novel polymer electrolytes partly reported during previous EMEA meetings also allow to fix efficiently catalytic layer not only on top of the electrode surface (CCE), but also directly on the surface of the membrane (CCM). Utilizing membranes based on these polymers allows designing electrolysis cell based on the so-called zero gap approach, i.e. with the electrodes attached directly to the membrane surface. Present contribution reports on development of two generations of the laboratory scale alkaline water electrolysis stack together with its selected components. Strategies for operating the stack in mode with zero pressure gradient on the membrane are discussed as well. The experimental study was accompanied by mathematical modelling on different levels of complexity representing solid background for the future stack scaling up.

Klasifikace

  • Druh

    O - Ostatní výsledky

  • CEP obor

  • OECD FORD obor

    10405 - Electrochemistry (dry cells, batteries, fuel cells, corrosion metals, electrolysis)

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/FV10529" target="_blank" >FV10529: Pokročilá elektrolytická výroba vodíku z OZE</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2019

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů