Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Freestanding LiFe0.2Mn0.8PO4/rGO nanocomposites as high energy density fast charging cathodes for lithium-ion batteries

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60461373%3A22310%2F20%3A43920429" target="_blank" >RIV/60461373:22310/20:43920429 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://www.sciencedirect.com/science/article/pii/S2468606920300356" target="_blank" >https://www.sciencedirect.com/science/article/pii/S2468606920300356</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.mtener.2020.100416" target="_blank" >10.1016/j.mtener.2020.100416</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Freestanding LiFe0.2Mn0.8PO4/rGO nanocomposites as high energy density fast charging cathodes for lithium-ion batteries

  • Popis výsledku v původním jazyce

    Freestanding electrodes for lithium ion batteries are considered as a promising option to increase the total gravimetric energy density of the cells due to a decreased weight of electrochemically inactive materials. We report a simple procedure for the fabrication of freestanding LiFe0.2Mn0.8PO4 (LFMP)/rGO electrodes with a very high loading of active material of 83 wt%, high total loading of up to 8 mg cm(-2), high energy density, excellent cycling stability and at the same time very fast charging rate, with a total performance significantly exceeding the values reported in the literature. The keys to the improved electrode performance are optimization of LFMP nanoparticles via nanoscaling and doping; the use of graphene oxide (GO) with its high concentration of surface functional groups favoring the adhesion of high amounts of LFMP nanoparticles, and freeze-casting of the GO-based nanocomposites to prevent the morphology collapse and provide a unique fluffy open microstructure of the freestanding electrodes. The rate and the cycling performance of the obtained freestanding electrodes are superior compared to their Al-foil coated equivalents, especially when calculated for the entire weight of the electrode, due to the extremely reduced content of electrochemically inactive material (17 wt% of electrochemically inactive material in case of the freestanding compared to 90 wt% for the Al-foil based electrode), resulting in 120 mAh g(-1) electrode in contrast to 10 mAh g(-1) electrode at 0.2 C. The electrochemical performance of the freestanding LFMP/rGO electrodes is also considerably better than the values reported in literature for freestanding LFMP and LMP composites, and can even keep up with those of LFP-based analogues. The freestanding LFMP/rGO reported in this work is additionally attractive due to its high gravimetric energy density (604 Wh kg(-1) LFMP at 0.2C). The obtained results demonstrate the advantage of freestanding LiFe0.2Mn0.8PO4/rGO electrodes and their great potential for applications in lithium ion batteries. (C) 2020 Elsevier Ltd. All rights reserved.

  • Název v anglickém jazyce

    Freestanding LiFe0.2Mn0.8PO4/rGO nanocomposites as high energy density fast charging cathodes for lithium-ion batteries

  • Popis výsledku anglicky

    Freestanding electrodes for lithium ion batteries are considered as a promising option to increase the total gravimetric energy density of the cells due to a decreased weight of electrochemically inactive materials. We report a simple procedure for the fabrication of freestanding LiFe0.2Mn0.8PO4 (LFMP)/rGO electrodes with a very high loading of active material of 83 wt%, high total loading of up to 8 mg cm(-2), high energy density, excellent cycling stability and at the same time very fast charging rate, with a total performance significantly exceeding the values reported in the literature. The keys to the improved electrode performance are optimization of LFMP nanoparticles via nanoscaling and doping; the use of graphene oxide (GO) with its high concentration of surface functional groups favoring the adhesion of high amounts of LFMP nanoparticles, and freeze-casting of the GO-based nanocomposites to prevent the morphology collapse and provide a unique fluffy open microstructure of the freestanding electrodes. The rate and the cycling performance of the obtained freestanding electrodes are superior compared to their Al-foil coated equivalents, especially when calculated for the entire weight of the electrode, due to the extremely reduced content of electrochemically inactive material (17 wt% of electrochemically inactive material in case of the freestanding compared to 90 wt% for the Al-foil based electrode), resulting in 120 mAh g(-1) electrode in contrast to 10 mAh g(-1) electrode at 0.2 C. The electrochemical performance of the freestanding LFMP/rGO electrodes is also considerably better than the values reported in literature for freestanding LFMP and LMP composites, and can even keep up with those of LFP-based analogues. The freestanding LFMP/rGO reported in this work is additionally attractive due to its high gravimetric energy density (604 Wh kg(-1) LFMP at 0.2C). The obtained results demonstrate the advantage of freestanding LiFe0.2Mn0.8PO4/rGO electrodes and their great potential for applications in lithium ion batteries. (C) 2020 Elsevier Ltd. All rights reserved.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10402 - Inorganic and nuclear chemistry

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/GC20-16124J" target="_blank" >GC20-16124J: Dvojdimenzionální vrstevnaté dichalkogenidy přechodných kovů / nanostrukturované uhlíkové kompozity pro aplikace na elektrochemické uchovávání energie</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2020

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    MATERIALS TODAY ENERGY

  • ISSN

    2468-6069

  • e-ISSN

  • Svazek periodika

    16

  • Číslo periodika v rámci svazku

    June 2020

  • Stát vydavatele periodika

    GB - Spojené království Velké Británie a Severního Irska

  • Počet stran výsledku

    11

  • Strana od-do

  • Kód UT WoS článku

    000539083500022

  • EID výsledku v databázi Scopus

    2-s2.0-85084917284