Microstructure and corrosion resistance of a duplex structured Mg–7.5Li–3Al–1Zn
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60461373%3A22310%2F20%3A43920879" target="_blank" >RIV/60461373:22310/20:43920879 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/60461373:22310/21:43922964
Výsledek na webu
<a href="https://www.sciencedirect.com/science/article/pii/S2213956720301535" target="_blank" >https://www.sciencedirect.com/science/article/pii/S2213956720301535</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.jma.2020.07.007" target="_blank" >10.1016/j.jma.2020.07.007</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Microstructure and corrosion resistance of a duplex structured Mg–7.5Li–3Al–1Zn
Popis výsledku v původním jazyce
This study describes the corrosion resistance of extruded, and extruded with post-processing annealing, Mg–7.5Li–3Al–1Zn alloys. The results demonstrate that extrusion at 350 °C with an extrusion speed 0.5 s−1 does not lead to the full recrystallization of the alloy, and the material still exhibits a dendritic microstructure. The post-processing annealing triggers the microstructure transformation, and the relative composition of the alloy changes. The ratio of β(Li) to α(Mg) in the extruded alloy was 29–71%; after annealing amount of β(Li) increased, and the ratio of β(Li) to α(Mg) in the annealed alloy was 35–65%. Corrosion testing shows that in 3.5 wt% NaCl the extruded alloys immediately undergo strong dissolution. As a result of the subsequent annealing, an improvement of corrosion resistance is observed. The higher amount of β(Li) in the annealed alloy reduces the area ratio of cathodic to anodic sites of corrosion, and this makes the annealed alloy more resistive under the analyzed conditions. © 2020
Název v anglickém jazyce
Microstructure and corrosion resistance of a duplex structured Mg–7.5Li–3Al–1Zn
Popis výsledku anglicky
This study describes the corrosion resistance of extruded, and extruded with post-processing annealing, Mg–7.5Li–3Al–1Zn alloys. The results demonstrate that extrusion at 350 °C with an extrusion speed 0.5 s−1 does not lead to the full recrystallization of the alloy, and the material still exhibits a dendritic microstructure. The post-processing annealing triggers the microstructure transformation, and the relative composition of the alloy changes. The ratio of β(Li) to α(Mg) in the extruded alloy was 29–71%; after annealing amount of β(Li) increased, and the ratio of β(Li) to α(Mg) in the annealed alloy was 35–65%. Corrosion testing shows that in 3.5 wt% NaCl the extruded alloys immediately undergo strong dissolution. As a result of the subsequent annealing, an improvement of corrosion resistance is observed. The higher amount of β(Li) in the annealed alloy reduces the area ratio of cathodic to anodic sites of corrosion, and this makes the annealed alloy more resistive under the analyzed conditions. © 2020
Klasifikace
Druh
J<sub>SC</sub> - Článek v periodiku v databázi SCOPUS
CEP obor
—
OECD FORD obor
20501 - Materials engineering
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Journal of Magnesium and Alloys
ISSN
2213-9567
e-ISSN
—
Svazek periodika
neuveden
Číslo periodika v rámci svazku
october
Stát vydavatele periodika
CN - Čínská lidová republika
Počet stran výsledku
14
Strana od-do
—
Kód UT WoS článku
—
EID výsledku v databázi Scopus
2-s2.0-85092212500