Phase mixture modeling of the grain size dependence of Young's modulus and thermal conductivity of alumina and zirconia ceramics
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60461373%3A22310%2F20%3A43921327" target="_blank" >RIV/60461373:22310/20:43921327 - isvavai.cz</a>
Výsledek na webu
<a href="https://reader.elsevier.com/reader/sd/pii/S0955221920300790?token=5264A546DBBA6C3CD74A65FF938C8725B55A4C0D18519D0F0A2D5726219DF163FCC2118E14C3218EE27136F163B52FBB" target="_blank" >https://reader.elsevier.com/reader/sd/pii/S0955221920300790?token=5264A546DBBA6C3CD74A65FF938C8725B55A4C0D18519D0F0A2D5726219DF163FCC2118E14C3218EE27136F163B52FBB</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.jeurceramsoc.2020.01.069" target="_blank" >10.1016/j.jeurceramsoc.2020.01.069</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Phase mixture modeling of the grain size dependence of Young's modulus and thermal conductivity of alumina and zirconia ceramics
Popis výsledku v původním jazyce
The grain size dependence of Young's modulus and thermal conductivity of alumina and zirconia ceramics is predicted via phase mixture modeling, using both analytical and numerical approaches. Using typical values for the thickness and properties of the grain boundaries, the equivalent volume fraction of "grain boundary phase" is calculated for a given grain shape. Based on this volume fraction estimate and a rough estimate of the grain boundary properties, the effective properties of the polycrystalline materials are calculated and compared in terms of volume-equivalent sphere diameters. For grains of cubic and tetrakaidecahedral shape excellent agreement is found between numerical calculations and analytical predictions based on the lower Hashin-Shtrikman bound. The grain size dependence is extremely weak for Young's modulus, but can be more significant for thermal conductivity, especially when the intrinsic conductivity of the material is high. The predictions are compared to literature data.
Název v anglickém jazyce
Phase mixture modeling of the grain size dependence of Young's modulus and thermal conductivity of alumina and zirconia ceramics
Popis výsledku anglicky
The grain size dependence of Young's modulus and thermal conductivity of alumina and zirconia ceramics is predicted via phase mixture modeling, using both analytical and numerical approaches. Using typical values for the thickness and properties of the grain boundaries, the equivalent volume fraction of "grain boundary phase" is calculated for a given grain shape. Based on this volume fraction estimate and a rough estimate of the grain boundary properties, the effective properties of the polycrystalline materials are calculated and compared in terms of volume-equivalent sphere diameters. For grains of cubic and tetrakaidecahedral shape excellent agreement is found between numerical calculations and analytical predictions based on the lower Hashin-Shtrikman bound. The grain size dependence is extremely weak for Young's modulus, but can be more significant for thermal conductivity, especially when the intrinsic conductivity of the material is high. The predictions are compared to literature data.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20504 - Ceramics
Návaznosti výsledku
Projekt
<a href="/cs/project/GA18-17899S" target="_blank" >GA18-17899S: Částečně a plně slinutá keramika - příprava, mikrostruktura, vlastnosti, modelování a teorie slinování</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Journal of the European Ceramic Society
ISSN
0955-2219
e-ISSN
—
Svazek periodika
40
Číslo periodika v rámci svazku
8
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
10
Strana od-do
3181-3190
Kód UT WoS článku
000523629100052
EID výsledku v databázi Scopus
—