Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Polypyrrole-Based Nanorobots Powered by Light and Glucose for Pollutant Degradation in Water

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60461373%3A22310%2F21%3A43922035" target="_blank" >RIV/60461373:22310/21:43922035 - isvavai.cz</a>

  • Nalezeny alternativní kódy

    RIV/60461373:22320/21:43922035 RIV/60461373:22330/21:43922035

  • Výsledek na webu

    <a href="http://10.1021/acsami.0c20055" target="_blank" >http://10.1021/acsami.0c20055</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1021/acsami.0c20055" target="_blank" >10.1021/acsami.0c20055</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Polypyrrole-Based Nanorobots Powered by Light and Glucose for Pollutant Degradation in Water

  • Popis výsledku v původním jazyce

    Novel photo- and enzymatically-active nanomotors were developed for efficient organic pollutant degradation. Light-absorbing polypyrrole nanoparticles were equipped with a bi-enzyme (glucose oxidase/catalase (GOx/Cat)) system enabling the simultaneous utilization of light and glucose as energy sources for jet-induced nanoparticle movement and active radical production. In particular, the GOx utilizes glucose to produce hydrogen peroxide, which is subsequently degraded by Cat, resulting in the generation of active radicals and/or oxygen bubbles that propel the particles. Uneven grafting of GOx/Cat molecules on the nanoparticle surface ensures inhomogeneity of peroxide creation/degradation, providing the nanomotors propelling in random directions. The nanomotors were tested for their ability to degrade a model pollutant, chlorophenol, in various experimental conditions, both with and without simulated sunlight illumination or glucose addition. In all cases, degradation was accelerated by the presence of the self-propelled microparticles or light illumination. Light-induced heating also positively affected enzymatic activity, further accelerating nanomotor diffusion and pollutant degradation. In fact, the chemical- and photoactivity of the nanoparticles led to more than 95 % removal of chlorophenol in 1 h, without any external stirring. Finally, the quality of the purified water and the extent of pollutant removal was checked using a microbiological assay, with significant synergy demonstrated between glucose pumping and sunlight illumination.

  • Název v anglickém jazyce

    Polypyrrole-Based Nanorobots Powered by Light and Glucose for Pollutant Degradation in Water

  • Popis výsledku anglicky

    Novel photo- and enzymatically-active nanomotors were developed for efficient organic pollutant degradation. Light-absorbing polypyrrole nanoparticles were equipped with a bi-enzyme (glucose oxidase/catalase (GOx/Cat)) system enabling the simultaneous utilization of light and glucose as energy sources for jet-induced nanoparticle movement and active radical production. In particular, the GOx utilizes glucose to produce hydrogen peroxide, which is subsequently degraded by Cat, resulting in the generation of active radicals and/or oxygen bubbles that propel the particles. Uneven grafting of GOx/Cat molecules on the nanoparticle surface ensures inhomogeneity of peroxide creation/degradation, providing the nanomotors propelling in random directions. The nanomotors were tested for their ability to degrade a model pollutant, chlorophenol, in various experimental conditions, both with and without simulated sunlight illumination or glucose addition. In all cases, degradation was accelerated by the presence of the self-propelled microparticles or light illumination. Light-induced heating also positively affected enzymatic activity, further accelerating nanomotor diffusion and pollutant degradation. In fact, the chemical- and photoactivity of the nanoparticles led to more than 95 % removal of chlorophenol in 1 h, without any external stirring. Finally, the quality of the purified water and the extent of pollutant removal was checked using a microbiological assay, with significant synergy demonstrated between glucose pumping and sunlight illumination.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10404 - Polymer science

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/GA18-26170S" target="_blank" >GA18-26170S: Světlem laditelné konjugované polymery pro vratné spínání vodivosti</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2021

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    ACS Applied Materials and Interfaces

  • ISSN

    1944-8244

  • e-ISSN

  • Svazek periodika

    2021

  • Číslo periodika v rámci svazku

    13

  • Stát vydavatele periodika

    US - Spojené státy americké

  • Počet stran výsledku

    9

  • Strana od-do

    16173-16181

  • Kód UT WoS článku

    000641156600019

  • EID výsledku v databázi Scopus

    2-s2.0-85104369496