Polypyrrole-Based Nanorobots Powered by Light and Glucose for Pollutant Degradation in Water
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60461373%3A22310%2F21%3A43922035" target="_blank" >RIV/60461373:22310/21:43922035 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/60461373:22320/21:43922035 RIV/60461373:22330/21:43922035
Výsledek na webu
<a href="http://10.1021/acsami.0c20055" target="_blank" >http://10.1021/acsami.0c20055</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1021/acsami.0c20055" target="_blank" >10.1021/acsami.0c20055</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Polypyrrole-Based Nanorobots Powered by Light and Glucose for Pollutant Degradation in Water
Popis výsledku v původním jazyce
Novel photo- and enzymatically-active nanomotors were developed for efficient organic pollutant degradation. Light-absorbing polypyrrole nanoparticles were equipped with a bi-enzyme (glucose oxidase/catalase (GOx/Cat)) system enabling the simultaneous utilization of light and glucose as energy sources for jet-induced nanoparticle movement and active radical production. In particular, the GOx utilizes glucose to produce hydrogen peroxide, which is subsequently degraded by Cat, resulting in the generation of active radicals and/or oxygen bubbles that propel the particles. Uneven grafting of GOx/Cat molecules on the nanoparticle surface ensures inhomogeneity of peroxide creation/degradation, providing the nanomotors propelling in random directions. The nanomotors were tested for their ability to degrade a model pollutant, chlorophenol, in various experimental conditions, both with and without simulated sunlight illumination or glucose addition. In all cases, degradation was accelerated by the presence of the self-propelled microparticles or light illumination. Light-induced heating also positively affected enzymatic activity, further accelerating nanomotor diffusion and pollutant degradation. In fact, the chemical- and photoactivity of the nanoparticles led to more than 95 % removal of chlorophenol in 1 h, without any external stirring. Finally, the quality of the purified water and the extent of pollutant removal was checked using a microbiological assay, with significant synergy demonstrated between glucose pumping and sunlight illumination.
Název v anglickém jazyce
Polypyrrole-Based Nanorobots Powered by Light and Glucose for Pollutant Degradation in Water
Popis výsledku anglicky
Novel photo- and enzymatically-active nanomotors were developed for efficient organic pollutant degradation. Light-absorbing polypyrrole nanoparticles were equipped with a bi-enzyme (glucose oxidase/catalase (GOx/Cat)) system enabling the simultaneous utilization of light and glucose as energy sources for jet-induced nanoparticle movement and active radical production. In particular, the GOx utilizes glucose to produce hydrogen peroxide, which is subsequently degraded by Cat, resulting in the generation of active radicals and/or oxygen bubbles that propel the particles. Uneven grafting of GOx/Cat molecules on the nanoparticle surface ensures inhomogeneity of peroxide creation/degradation, providing the nanomotors propelling in random directions. The nanomotors were tested for their ability to degrade a model pollutant, chlorophenol, in various experimental conditions, both with and without simulated sunlight illumination or glucose addition. In all cases, degradation was accelerated by the presence of the self-propelled microparticles or light illumination. Light-induced heating also positively affected enzymatic activity, further accelerating nanomotor diffusion and pollutant degradation. In fact, the chemical- and photoactivity of the nanoparticles led to more than 95 % removal of chlorophenol in 1 h, without any external stirring. Finally, the quality of the purified water and the extent of pollutant removal was checked using a microbiological assay, with significant synergy demonstrated between glucose pumping and sunlight illumination.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10404 - Polymer science
Návaznosti výsledku
Projekt
<a href="/cs/project/GA18-26170S" target="_blank" >GA18-26170S: Světlem laditelné konjugované polymery pro vratné spínání vodivosti</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
ACS Applied Materials and Interfaces
ISSN
1944-8244
e-ISSN
—
Svazek periodika
2021
Číslo periodika v rámci svazku
13
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
9
Strana od-do
16173-16181
Kód UT WoS článku
000641156600019
EID výsledku v databázi Scopus
2-s2.0-85104369496