Liquid Metals-Assisted Synthesis of Scalable 2D Nanomaterials: Prospective Sediment Inks for Screen-Printed Energy Storage Applications
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60461373%3A22310%2F21%3A43922141" target="_blank" >RIV/60461373:22310/21:43922141 - isvavai.cz</a>
Výsledek na webu
<a href="https://onlinelibrary.wiley.com/doi/full/10.1002/adfm.202010320" target="_blank" >https://onlinelibrary.wiley.com/doi/full/10.1002/adfm.202010320</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1002/adfm.202010320" target="_blank" >10.1002/adfm.202010320</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Liquid Metals-Assisted Synthesis of Scalable 2D Nanomaterials: Prospective Sediment Inks for Screen-Printed Energy Storage Applications
Popis výsledku v původním jazyce
The advents in flexible and smart technology like wearable electronics have accelerated the demand for high-performance energy-storage devices. These devices could significantly reduce the size of the next-generation wearable smart electronics. A selection of suitable printing technology and its product typically offer a reasonable manufacturing pathway like high deposition rate, low materials waste, scalable fabrication, and high-performance production. Therefore, the production of novel functional inks with desirable rheological properties that authorize high-resolution printing, are some major challenges of this technology. This work has an emphasis on the recent advancements in supporting and utilizing liquid metals chemistry to synthesis high-quality and scalable 2D nanomaterials by liquid-phase free exfoliation and facile sonication-assisted methods. These are novel concepts in synthesizing 2D nanomaterials particularly for those which either have not intrinsic layered crystal structures or those with strong interaction between their crystal layers which are difficult to synthesized using conventional approaches. It also provides some potentials to make sustainable ink formulation of such 2D nanostructures for the fabrication of high-quality screen-printed patterns for sustainable energy applications. Subsequently, it deals with the possibilities and challenges of printing such 2D nanomaterials (namely, 2D metal oxides) for micro-supercapacitor and micro-battery applications on an industrially viable scale.
Název v anglickém jazyce
Liquid Metals-Assisted Synthesis of Scalable 2D Nanomaterials: Prospective Sediment Inks for Screen-Printed Energy Storage Applications
Popis výsledku anglicky
The advents in flexible and smart technology like wearable electronics have accelerated the demand for high-performance energy-storage devices. These devices could significantly reduce the size of the next-generation wearable smart electronics. A selection of suitable printing technology and its product typically offer a reasonable manufacturing pathway like high deposition rate, low materials waste, scalable fabrication, and high-performance production. Therefore, the production of novel functional inks with desirable rheological properties that authorize high-resolution printing, are some major challenges of this technology. This work has an emphasis on the recent advancements in supporting and utilizing liquid metals chemistry to synthesis high-quality and scalable 2D nanomaterials by liquid-phase free exfoliation and facile sonication-assisted methods. These are novel concepts in synthesizing 2D nanomaterials particularly for those which either have not intrinsic layered crystal structures or those with strong interaction between their crystal layers which are difficult to synthesized using conventional approaches. It also provides some potentials to make sustainable ink formulation of such 2D nanostructures for the fabrication of high-quality screen-printed patterns for sustainable energy applications. Subsequently, it deals with the possibilities and challenges of printing such 2D nanomaterials (namely, 2D metal oxides) for micro-supercapacitor and micro-battery applications on an industrially viable scale.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10402 - Inorganic and nuclear chemistry
Návaznosti výsledku
Projekt
<a href="/cs/project/LL2003" target="_blank" >LL2003: Nová Generace Monoelementárních 2D</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Advanced Functional Materials
ISSN
1616-301X
e-ISSN
—
Svazek periodika
31
Číslo periodika v rámci svazku
17
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
20
Strana od-do
—
Kód UT WoS článku
000619545000001
EID výsledku v databázi Scopus
2-s2.0-85101011129