A Maze in Plastic Wastes: Autonomous Motile Photocatalytic Microrobots against Microplastics
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60461373%3A22310%2F21%3A43924028" target="_blank" >RIV/60461373:22310/21:43924028 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/62156489:43210/21:43919968 RIV/00216305:26620/21:PU141447
Výsledek na webu
<a href="https://pubs.acs.org/doi/full/10.1021/acsami.1c04559" target="_blank" >https://pubs.acs.org/doi/full/10.1021/acsami.1c04559</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1021/acsami.1c04559" target="_blank" >10.1021/acsami.1c04559</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
A Maze in Plastic Wastes: Autonomous Motile Photocatalytic Microrobots against Microplastics
Popis výsledku v původním jazyce
An extremely high quantity of small pieces of synthetic polymers, namely, microplastics, has been recently identified in some of the most intact natural environments, e.g., on top of the Alps and Antarctic ice. This is a "scary wake-up call", considering the potential risks of microplastics for humans and marine systems. Sunlight-driven photocatalysis is the most energy-efficient currently known strategy for plastic degradation; however, attaining efficient photocatalyst-plastic interaction and thus an effective charge transfer in the micro/nanoscale is very difficult; that adds up to the common challenges of heterogeneous photocatalysis including low solubility, precipitation, and aggregation of the photocatalysts. Here, an active photocatalytic degradation procedure based on intelligent visible-light-driven microrobots with the capability of capturing and degrading microplastics "on-the-fly"in a complex multichannel maze is introduced. The robots with hybrid powers carry built-in photocatalytic (BiVO4) and magnetic (Fe3O4) materials allowing a self-propelled motion under sunlight with the possibility of precise actuation under a magnetic field inside the macrochannels. The photocatalytic robots are able to efficiently degrade different synthetic microplastics, particularly polylactic acid, polycaprolactone, thanks to the generated local self-stirring effect in the nanoscale and enhanced interaction with microplastics without using any exterior mechanical stirrers, typically used in conventional systems. Overall, this proof-of-concept study using microrobots with hybrid wireless powers has shown for the first time the possibility of efficient degradation of ultrasmall plastic particles in confined complex spaces, which can impact research on microplastic treatments, with the final goal of diminishing microplastics as an emergent threat for humans and marine ecosystems. © 2021 American Chemical Society. All rights reserved.
Název v anglickém jazyce
A Maze in Plastic Wastes: Autonomous Motile Photocatalytic Microrobots against Microplastics
Popis výsledku anglicky
An extremely high quantity of small pieces of synthetic polymers, namely, microplastics, has been recently identified in some of the most intact natural environments, e.g., on top of the Alps and Antarctic ice. This is a "scary wake-up call", considering the potential risks of microplastics for humans and marine systems. Sunlight-driven photocatalysis is the most energy-efficient currently known strategy for plastic degradation; however, attaining efficient photocatalyst-plastic interaction and thus an effective charge transfer in the micro/nanoscale is very difficult; that adds up to the common challenges of heterogeneous photocatalysis including low solubility, precipitation, and aggregation of the photocatalysts. Here, an active photocatalytic degradation procedure based on intelligent visible-light-driven microrobots with the capability of capturing and degrading microplastics "on-the-fly"in a complex multichannel maze is introduced. The robots with hybrid powers carry built-in photocatalytic (BiVO4) and magnetic (Fe3O4) materials allowing a self-propelled motion under sunlight with the possibility of precise actuation under a magnetic field inside the macrochannels. The photocatalytic robots are able to efficiently degrade different synthetic microplastics, particularly polylactic acid, polycaprolactone, thanks to the generated local self-stirring effect in the nanoscale and enhanced interaction with microplastics without using any exterior mechanical stirrers, typically used in conventional systems. Overall, this proof-of-concept study using microrobots with hybrid wireless powers has shown for the first time the possibility of efficient degradation of ultrasmall plastic particles in confined complex spaces, which can impact research on microplastic treatments, with the final goal of diminishing microplastics as an emergent threat for humans and marine ecosystems. © 2021 American Chemical Society. All rights reserved.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10405 - Electrochemistry (dry cells, batteries, fuel cells, corrosion metals, electrolysis)
Návaznosti výsledku
Projekt
—
Návaznosti
O - Projekt operacniho programu
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
ACS Applied Materials and Interfaces
ISSN
1944-8244
e-ISSN
1944-8252
Svazek periodika
13
Číslo periodika v rámci svazku
21
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
9
Strana od-do
25102-25110
Kód UT WoS článku
000659315800072
EID výsledku v databázi Scopus
2-s2.0-85107710906