Molten salt-based nanocomposites for thermal energy storage: Materials, preparation techniques and properties
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60461373%3A22310%2F22%3A43924086" target="_blank" >RIV/60461373:22310/22:43924086 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.sciencedirect.com/science/article/pii/S1364032122004476" target="_blank" >https://www.sciencedirect.com/science/article/pii/S1364032122004476</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.rser.2022.112548" target="_blank" >10.1016/j.rser.2022.112548</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Molten salt-based nanocomposites for thermal energy storage: Materials, preparation techniques and properties
Popis výsledku v původním jazyce
Amongst various alternative energy storage and energy-producing technologies that have been developed and introduced in the past years, advanced heat transfer technologies are constantly growing popular. The efficiency of these systems is exclusively determined by the heat transfer fluid and its chemical and thermophysical properties. The application frequency of various mixtures of inorganic salts, which offer stability in a greater temperature range than organic compounds, is increasing over time. The most important properties such as the specific heat capacity, along with the thermal conductivity, viscosity, or the melting point can be significantly influenced by a well-designed addition of nanomaterials to the base fluid, leading to a formation of a multi-phase composite system often called nanofluid. Apart from the various energy-storage technologies, preparation techniques, and theoretical fundamentals, this review is aimed at a clear summarization of the up to date described molten salt-based composites with enhanced thermophysical properties, including the most important and often overlooked influencing factors such as the input materials, preparation techniques, and measurement conditions.
Název v anglickém jazyce
Molten salt-based nanocomposites for thermal energy storage: Materials, preparation techniques and properties
Popis výsledku anglicky
Amongst various alternative energy storage and energy-producing technologies that have been developed and introduced in the past years, advanced heat transfer technologies are constantly growing popular. The efficiency of these systems is exclusively determined by the heat transfer fluid and its chemical and thermophysical properties. The application frequency of various mixtures of inorganic salts, which offer stability in a greater temperature range than organic compounds, is increasing over time. The most important properties such as the specific heat capacity, along with the thermal conductivity, viscosity, or the melting point can be significantly influenced by a well-designed addition of nanomaterials to the base fluid, leading to a formation of a multi-phase composite system often called nanofluid. Apart from the various energy-storage technologies, preparation techniques, and theoretical fundamentals, this review is aimed at a clear summarization of the up to date described molten salt-based composites with enhanced thermophysical properties, including the most important and often overlooked influencing factors such as the input materials, preparation techniques, and measurement conditions.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10402 - Inorganic and nuclear chemistry
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Renewable & Sustainable Energy Reviews
ISSN
1364-0321
e-ISSN
1879-0690
Svazek periodika
164
Číslo periodika v rámci svazku
August 2022
Stát vydavatele periodika
BE - Belgické království
Počet stran výsledku
16
Strana od-do
nestrankovano
Kód UT WoS článku
000830583600005
EID výsledku v databázi Scopus
2-s2.0-85130878281