Fully Programmable Collective Behavior of Light-Powered Chemical Microrobotics: pH-Dependent Motion Behavior Switch and Controlled Cancer Cell Destruction
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60461373%3A22310%2F22%3A43924101" target="_blank" >RIV/60461373:22310/22:43924101 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/60461373:22330/22:43924101 RIV/60461373:22810/22:43924101 RIV/00216305:26620/22:PU145159
Výsledek na webu
<a href="https://onlinelibrary.wiley.com/doi/full/10.1002/adfm.202205062" target="_blank" >https://onlinelibrary.wiley.com/doi/full/10.1002/adfm.202205062</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1002/adfm.202205062" target="_blank" >10.1002/adfm.202205062</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Fully Programmable Collective Behavior of Light-Powered Chemical Microrobotics: pH-Dependent Motion Behavior Switch and Controlled Cancer Cell Destruction
Popis výsledku v původním jazyce
The development of fuel-free light-powered multi stimuli-responsive microrobots is becoming a vital field in biomedical research. The challenge is to design biomedical robots with precise motion control and novel functionalities such that one day they will stand alongside medical staff as fully fledged partners in the delivery of advanced non-invasive therapeutic procedures. In this study, a simple one-step etching/polymerization procedure is used to fabricate crystalline metal-organic framework structures surface-coated with a conductive polypyrrole (PPy) layer and then enriched with Methylene Blue sensitizer molecules. Due to the PPy surface charge, the microrobots start to move when exposed to a visible light source, enabling the controllable accumulation of the microrobots at the focal point of the light beam. Furthermore, a self-regulated motion is achieved by the PPy surface charge also providing a pH-dependent switch capable of altering microrobot behavior. In vitro study is conducted to test microrobot efficiency against human cervix carcinoma HeLa cells. It is shown that the micromotors are able to penetrate and successfully destroy the cancer cells. The work provides proof-of-concept for a novel strategy in which such microrobots can be guided by an optical beam, can self-regulate movement toward or away from each other, and can perform therapeutic functions with great efficiency.
Název v anglickém jazyce
Fully Programmable Collective Behavior of Light-Powered Chemical Microrobotics: pH-Dependent Motion Behavior Switch and Controlled Cancer Cell Destruction
Popis výsledku anglicky
The development of fuel-free light-powered multi stimuli-responsive microrobots is becoming a vital field in biomedical research. The challenge is to design biomedical robots with precise motion control and novel functionalities such that one day they will stand alongside medical staff as fully fledged partners in the delivery of advanced non-invasive therapeutic procedures. In this study, a simple one-step etching/polymerization procedure is used to fabricate crystalline metal-organic framework structures surface-coated with a conductive polypyrrole (PPy) layer and then enriched with Methylene Blue sensitizer molecules. Due to the PPy surface charge, the microrobots start to move when exposed to a visible light source, enabling the controllable accumulation of the microrobots at the focal point of the light beam. Furthermore, a self-regulated motion is achieved by the PPy surface charge also providing a pH-dependent switch capable of altering microrobot behavior. In vitro study is conducted to test microrobot efficiency against human cervix carcinoma HeLa cells. It is shown that the micromotors are able to penetrate and successfully destroy the cancer cells. The work provides proof-of-concept for a novel strategy in which such microrobots can be guided by an optical beam, can self-regulate movement toward or away from each other, and can perform therapeutic functions with great efficiency.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10405 - Electrochemistry (dry cells, batteries, fuel cells, corrosion metals, electrolysis)
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Advanced Functional Materials
ISSN
1616-301X
e-ISSN
1616-3028
Svazek periodika
32
Číslo periodika v rámci svazku
38
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
15
Strana od-do
nestrankovano
Kód UT WoS článku
000824117000001
EID výsledku v databázi Scopus
2-s2.0-85133974330