Novel Design Aspects of All-Solid-State Batteries
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60461373%3A22310%2F22%3A43924148" target="_blank" >RIV/60461373:22310/22:43924148 - isvavai.cz</a>
Výsledek na webu
<a href="https://link.springer.com/chapter/10.1007/978-3-031-12470-9_6" target="_blank" >https://link.springer.com/chapter/10.1007/978-3-031-12470-9_6</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-031-12470-9_6" target="_blank" >10.1007/978-3-031-12470-9_6</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Novel Design Aspects of All-Solid-State Batteries
Popis výsledku v původním jazyce
Conventional design of all-solid-state battery limits the portable device fabrication due to sluggish interfacial contact, safety, and high manufacturing cost. Additionally, unfavorable Li-dendrite formation and low coulombic efficiency hinder the further use. This will lead to low energy density that cannot satisfy current energy demand for the potential applications. Geometry evolution is one choice to address these challenges where we switch one dimensional to different dimensional, based on our demand. New full cell geometry will play vital role in achieving great contact between the electrode and electrolyte. Recently, the full cell geometry has shown great attraction starting from thin-film design to 3D geometry. In this chapter, we centered the conventional batteries merits and demerits. Also, we described the materials compatibility, electrode–electrolyte interface, and conventional battery design strategies. Followed, this chapter summarized the recent advances and critical challenges on the full cell geometry design which are presented with discussion with respect to interfacial interactions and ionic conductivity improvements for all-solid-state batteries.
Název v anglickém jazyce
Novel Design Aspects of All-Solid-State Batteries
Popis výsledku anglicky
Conventional design of all-solid-state battery limits the portable device fabrication due to sluggish interfacial contact, safety, and high manufacturing cost. Additionally, unfavorable Li-dendrite formation and low coulombic efficiency hinder the further use. This will lead to low energy density that cannot satisfy current energy demand for the potential applications. Geometry evolution is one choice to address these challenges where we switch one dimensional to different dimensional, based on our demand. New full cell geometry will play vital role in achieving great contact between the electrode and electrolyte. Recently, the full cell geometry has shown great attraction starting from thin-film design to 3D geometry. In this chapter, we centered the conventional batteries merits and demerits. Also, we described the materials compatibility, electrode–electrolyte interface, and conventional battery design strategies. Followed, this chapter summarized the recent advances and critical challenges on the full cell geometry design which are presented with discussion with respect to interfacial interactions and ionic conductivity improvements for all-solid-state batteries.
Klasifikace
Druh
C - Kapitola v odborné knize
CEP obor
—
OECD FORD obor
10405 - Electrochemistry (dry cells, batteries, fuel cells, corrosion metals, electrolysis)
Návaznosti výsledku
Projekt
<a href="/cs/project/LL2101" target="_blank" >LL2101: Příští Generace Monoelementárních 2D Materiálů</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název knihy nebo sborníku
Solid State Batteries
ISBN
978-3-031-12469-3
Počet stran výsledku
35
Strana od-do
"157–191"
Počet stran knihy
295
Název nakladatele
Springer International Publishing Switzerland
Místo vydání
Cham
Kód UT WoS kapitoly
—