A Decade of Germananes: Four Approaches to Their Functionalization
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60461373%3A22310%2F22%3A43924184" target="_blank" >RIV/60461373:22310/22:43924184 - isvavai.cz</a>
Výsledek na webu
<a href="https://pubs.acs.org/doi/full/10.1021/acs.inorgchem.2c01873" target="_blank" >https://pubs.acs.org/doi/full/10.1021/acs.inorgchem.2c01873</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1021/acs.inorgchem.2c01873" target="_blank" >10.1021/acs.inorgchem.2c01873</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
A Decade of Germananes: Four Approaches to Their Functionalization
Popis výsledku v původním jazyce
Since the first synthesis of germanane (GeH) reported in 2013, two-dimensional germanium-based materials have been intensively studied. Over the past decade, several methodologies for the functionalization of germanane have been introduced. The first approach utilized exfoliation of Zintl phase CaGe2 with alkyl halides. Liu's solvothermal method was used for the synthesis of methyl germanane. Another methodology utilized Ge-H activation with sodium naphthalenide and its subsequent alkylation. All of these methods provide functionalized germananes; thus, a comparison of these methods is needed. In this paper, such a comparison of current synthetic approaches towards alkyl germananes is reported, and additionally, a new method for Ge-H activation utilizing a NaK equimolar alloy is presented as a fourth approach. For this purpose, eight alkyl reagents were chosen representing reactive benzyl bromides as well as linear esters and nitriles because they contain easily trackable functional groups. The materials were characterized using Fourier transform infrared spectroscopy, Raman spectroscopy, X-ray photoelectron spectroscopy, and thermogravimetric analysis, and the data were compared. The comparison of all methods revealed not only some drawbacks for each method but also their advantages. The method utilizing sodium naphthalenide provided the lowest degree of surface coverage, whereas the solvothermal method seemed to provide materials with the highest degree of functionalization; unfortunately, the functionalization was also accompanied by a high degree of surface oxidation, i.e., (Ge-OH/Ge═O) formation. The highest degree of surface coverage accompanied by the lowest degree of surface oxidation was achieved employing Goldberger's phase transfer direct exfoliation of CaGe2 as well as Ge-H activation using the NaK alloy with subsequent alkylation. © 2022 American Chemical Society.
Název v anglickém jazyce
A Decade of Germananes: Four Approaches to Their Functionalization
Popis výsledku anglicky
Since the first synthesis of germanane (GeH) reported in 2013, two-dimensional germanium-based materials have been intensively studied. Over the past decade, several methodologies for the functionalization of germanane have been introduced. The first approach utilized exfoliation of Zintl phase CaGe2 with alkyl halides. Liu's solvothermal method was used for the synthesis of methyl germanane. Another methodology utilized Ge-H activation with sodium naphthalenide and its subsequent alkylation. All of these methods provide functionalized germananes; thus, a comparison of these methods is needed. In this paper, such a comparison of current synthetic approaches towards alkyl germananes is reported, and additionally, a new method for Ge-H activation utilizing a NaK equimolar alloy is presented as a fourth approach. For this purpose, eight alkyl reagents were chosen representing reactive benzyl bromides as well as linear esters and nitriles because they contain easily trackable functional groups. The materials were characterized using Fourier transform infrared spectroscopy, Raman spectroscopy, X-ray photoelectron spectroscopy, and thermogravimetric analysis, and the data were compared. The comparison of all methods revealed not only some drawbacks for each method but also their advantages. The method utilizing sodium naphthalenide provided the lowest degree of surface coverage, whereas the solvothermal method seemed to provide materials with the highest degree of functionalization; unfortunately, the functionalization was also accompanied by a high degree of surface oxidation, i.e., (Ge-OH/Ge═O) formation. The highest degree of surface coverage accompanied by the lowest degree of surface oxidation was achieved employing Goldberger's phase transfer direct exfoliation of CaGe2 as well as Ge-H activation using the NaK alloy with subsequent alkylation. © 2022 American Chemical Society.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10402 - Inorganic and nuclear chemistry
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Inorganic Chemistry
ISSN
0020-1669
e-ISSN
1520-510X
Svazek periodika
61
Číslo periodika v rámci svazku
31
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
8
Strana od-do
12425-12432
Kód UT WoS článku
000885814200001
EID výsledku v databázi Scopus
2-s2.0-85135957633